(a)
Interpretation:
The transfer function
Concept introduction:
For all possible input values, the relationship of input and signal of control system is represented by a Transfer Function.
Visualization of control system is done by using block diagram in which blocks are used to represent the transfer function of the model and arrows are used to represent input and output signals of system.
(b)
Interpretation:
The response for step-change in
Concept introduction:
The main importance of the concept of step response in electronics engineering and control theory. Within a very short time, the input of the general system changes from zero to one i.e. it is the output of the system. This time behaviors of the output of the general system are represented by step response.
(c)
Interpretation:
The step response for the system needs to be calculated, if the input change is same.
Concept introduction:
The main importance of the concept of step response in electronics engineering and control theory. Within a very short time, the input of the general system changes from zero to one i.e. it is the output of the system. This time behaviors of the output of the general system are represented by step response.
(d)
Interpretation:
The dynamics conductivity cell of solution (b) and (c) needs to be compared.
Concept introduction:
The main importance of the concept of step response in electronics engineering and control theory. Within a very short time, the input of the general system changes from zero to one i.e. it is the output of the system. This time behaviors of the output of the general system are represented by step response.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Process Dynamics And Control, 4e
- At a Pressure of 600 mm Hg, match the substance with the boiling temperature. 54.69°C 1. n-Pentane 49.34°C 2. n-Hexane 3. Acetone 29.32°C く 61.40°C 4. Chloroformarrow_forwardA mixture of oil and gas flows through a horizontal pipe with an inside diameter of 150 mm. The respective volumetric flow rates for the oil and gas are 0.015 and 0.29 m³s-1. Determine the gas void frac- tion and the average velocities of the oil and gas. The friction factor may be assumed to be 0.0045. The gas has a density of 2.4 kgm³ and viscosity of 1 x 10-5 Nsm-2. The oil has a density of 810 kgm³ and density of 0.82 Nsm². Answer: 0.79, 20.8 ms-1, 4 ms-1arrow_forward4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs at one end and air at a rate of 5 x 104 kgs in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm3. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs 1, 61.1 kgm³, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forward
- 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³. 2. Describe, with the use of sketches, the various flow regimes that can exist in a vertical pipe carrying two-phase flow (liquid and gas).arrow_forwardA mixture of high pressure water and steam at a rate of 0.5 kgs-¹ flows up a vertical tube with an inside diameter of 25.4 mm at a pres- sure 22 bar. Determine the type of flow if the mass quality is 1%. The density of the water is 845 kgm³, the density of steam is 10.8 kgm³, and the viscosity of the water is 1.24 x 104 Nsm2. Answer: Slug flowarrow_forward5. Describe, with the use of sketches, the various two-phase flow regimes that can exist in a horizontal pipe carrying a liquid and a gas. 6. Explain what is meant by gas hold-up and describe ways in which it can be measured.arrow_forward
- A mixture of air and water at a temperature of 25°C flows up through a vertical tube with a length of 4 m and an internal diameter of 25.4 mm with the exit of the tube being at atmospheric pressure. The mass flows of the air and the water are 0.007 kgs¹ and 0.3 kgs-¹, respectively. For air, the density is 1.2 kgm3 and viscosity is 1.85 x 10-5 Nsm-2, and for water, the density is 1000 kgm-3 and viscosity is 8.9 × 10-4 Nsm 2. Answer: 2.7 kNm 2marrow_forwardAt a Pressure of 200 mm Hg, match the substance with the boiling temperature. 69.50°C 1. Benzene 1.92°C 2. Toluene 41.94°C 3. n-Pentane 4. n-Hexane 31.61°Carrow_forwardAt a Pressure of 400 mm Hg, match the substance with the boiling temperature. 62.89°C 1. Styrene 122.69°C 2. Ethanol 3. Toluene 89.48°C 4. Benzene 60.61°Carrow_forward
- 8. A gas is admitted at a rate of 0.015 m³s-¹ to a vertical glass pipe with an inside diameter of 50 mm. The gas bubbles that form travel with a velocity of 32 ms-¹. Determine the gas void fraction and the velocity of the liquid if the volumetric flow is 2.5 x 10-5 m³s-1. Answer: 0.24, 1.7 ms-1 9 Characterise the main concepts of a homogeneous flow model sepa-arrow_forward3. A mixture of air and water at a temperature of 25°C flows up through a vertical tube with a length of 4 m and an internal diameter of 25.4 mm with the exit of the tube being at atmospheric pressure. The mass flows of the air and the water are 0.007 kgs-1 and 0.3 kgs-1, respectively. For air, the density is 1.2 kgm³ and viscosity is 1.85 x 10-5 Nsm-2, and for water, the density is 1000 kgm-3 and viscosity is 8.9 × 10-4 Nsm-2. Answer: 2.7 kNm-2m-1arrow_forward15. Show that for a one-dimensional annular flow in a horizontal pipe with no acceleration, the pressure gradient on the gas core is dp= 4ti dz d√√α where t, is the interfacial shear stress and a is the gas void fraction.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The