FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
An inventor claims to have devised a refrigeration cycle operating between hot and cold reservoirs at 308 K and 278 K, respectively, that removes an amount of energy QC by heat transfer from the cold reservoir that is a multiple of the net work input—that is, QC = NWcycle, where all quantities are positive. Determine the maximum theoretical value of the number N for any such cycle.
The thermal efficiency of a reversible power cycle operating between hot and cold reservoirs is 50%.
Evaluate the coefficient of performance of:
(a) a reversible refrigeration cycle operating between the same two reservoirs.
(b) a reversible heat pump cycle operating between the same two reservoirs.
At steady state, a refrigeration cycle removes 800 kJ/min of energy by heat transfer from acold space maintained at -15o C and discharges energy by heat transfer to its surroundings at20o C. If the coefficient of performance of the actual cycle is 80 percent of that of areversible refrigeration cycle (ideal) operating between thermal reservoirs at these twotemperatures (β = 0.80 βmax), determine:a) Coefficient of performance;b) Power input to the cycle, in kW;c) Heat rejected to the surroundings.Draw sketch and show all calculations.
Knowledge Booster
Similar questions
- A reversible power cycle whose thermal efficiency is 50% operates between a reservoir at 1800 K and a reservoir at a lower temperature T. Determine T, in K.arrow_forwardAn air conditioner operating at steady state maintains a dwelling at 20 C on a day when the outside temperature is 35 C. Energy is removed by heat transfer from the dwelling at a rate of 2800 J/s while the air conditioner's power input is 0.8 kw. (a) Determine the coefficient of performance of the air conditioner. (b) Determine the power input required if it was a Carnot refrigerator. English (United States) 目 98%arrow_forwardKelvin-Planck statement defines the Second law of thermodynamics as a. It is impossible to construct a machine that will operate in a cycle, extract heat from a reservoir, and do an equivalent amount of work on the surroundings. b. It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body. c. It is possible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body. d. It is possible to construct a machine that will operate in a cycle, extract heat from a reservoir, and do an equivalent amount of work on the surroundings.arrow_forward
- As shown in the figure, an air conditioner operating at steady state maintains a dwelling at 70°F on a day when the outside temperature is 90°F. The rate of heat transfer into the dwelling through the walls and roof is 30,000 Btu/h and the net power input to the air conditioner compressor is 3 hp. Determine a. the coefficient of performance for the air conditioner b. power input required in hp c. coefficient of performance for a reversible air conditioner providing the same cooling effect while operating between the same cold and hot temperatures.arrow_forwardApply the second law of thermodynamics to cycles and cyclic devices.arrow_forwardIdentify valid processes as those that satisfy both the first and second laws of thermodynamics.arrow_forward
- Two reversible cycles operate between hot and cold reservoirs at temperatures TH and TC, respectively. (a)If one is a power cycle and the other is a refrigeration cycle, what is the relation between the coefficient of performance of the refrigeration cycle and the thermal efficiency of the power cycle? (b)If one is a refrigeration cycle and the other is a heat pump cycle, what is the relation between their coefficients of performance?arrow_forwardThe gasoline internal combustion engine operates in a cycle consisting of six parts. Four of these parts involve, among other things, friction, heat exchange through finite temperature differences, and accelerations of the piston; it is irreversible. Nevertheless, it is represented by the ideal reversible Otto cycle with a pV-diagram as illustrated below. The working substance of the cycle is assumed to be air. PA Q1 D B Q2 Ро V V8 = Vc VA = VDarrow_forwardSecond-law efficiency is a measure of the performance of a device relative to its performance under reversible conditions.arrow_forward
- Thermodynamics Apply the steady flow energy equation to plant equipment.arrow_forwardThree sub steps of a thermodynamic cycle are employed in order to change the state of a gas from 1 bar, 1.5 cubic meter and internal energy of 512 kJ. The processes are: 1st step: Compression at constant PV to a pressure of 2 bar and internal energy of 690 kJ. 2nd step: A process where work transferred is zero and heat transferred is - 150 kJ. 3rd step: A process where work transferred is -50 kJ. without KE and PE changes, determine: a. heat transferred during 1st step (kJ) b. heat transferred during 3rd step (kJ)arrow_forwardA thermodynamic cycle receives 150 J of heat from a cold reservoir and rejects 165 J of heat to a hot reservoir. What is its coefficient of performance as a refrigeration cycle, (B) ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY