FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
I need help going through the process to solve this problem, I think I have a general idea, but want to make sure I am doing it correctly.
A counterflow heat exchanger operates at steady state while being well-insulated from the surroundings with air and ammonia flowing in separate streams. Ammonia enters at state 1 with -30°C and a quality of 30% and exits at state 2 as saturated vapor at -30°C. Air enters at state 3 with pressure 1 bar and temperature 295 K and exits at state 4 with pressure 1 bar and temperature 265 K. The flow rate of air is 10 kg/s. Ignore kinetic and potential energy effects, and take the dead state as 1 bar and 300 K.
a. Describe the heat transfer inside the heat exchanger (what is transferring heat to what?)
b. Determine the specific enthalpy of each state, in kJ/kg.
c. Determine the mass flow rate of ammonia, in kg/s.
d. Determine the rate of exergy destruction within the heat exchanger, in kW.e. Devise and evaluate an exergetic efficiency for the heat…
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K.
If the designer wants to ensure no water vapor is present in the exiting water stream, what is the minimum mass flow rate for the water, in kg/s?
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water
enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat
exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c= 2 kJ/kg · K.
If the designer wants to ensure no water vapor is present in the exiting water stream, what is the minimum mass flow rate for the
water, in kg/s?
mwater,min =
i
kg/s
Knowledge Booster
Similar questions
- At steady state, Refrigerant 22 enters (1) the compressor at 40C, 5.5bar and is compressed to 60C, 13.8bar. R-22 exiting (2) the compressor enters a heat exchanger where energy transfer to air as a separate stream occurs and the refrigerant exits (3) as a liquid at 13.5bar, 32C. Air enters (4) the condenser at 27C, 1.0bar with a volumetric flow rate of 21.2m3/min and exits (5) at 43C. Assuming ideal gas behavior for the air and stray heat transfer and kinetic and potential energy effects are negligible, determine the compressor powerarrow_forwardAir as an ideal gas flows through the compressor and heat exchanger shown in the figure. A separate liquid stream also flows through the heat exchanger. The data given are for operation at steady state. Stray heat transfer to the surroundings can be neglected, as can all kinetic and potential energy changes. Determine the compressor power, in kW, and the mass flow rate of the cooling water, in kg/s.arrow_forwardNeed help please :)arrow_forward
- Steady-state operating data are provided for a compressor and heat exchanger in the figure below. The power input to the compressor is 50 kW. As shown in the figure, nitrogen (N2) flows through the compressor and heat exchanger with mass flow rate of 0.25 kg/s. The nitrogen is modeled as an ideal gas. A separate cooling stream of helium, modeled as an ideal gas with k=1.67, also flows through the heat exchanger. Stray heat transfer and kinetic and potential energy effects are negligible. Find: a) Enthalpy change of Nitrogen from inlet to the compressor and exit from Heat exchanger, ( ℎ1-ℎ3) in kJ/kg, b) Enthalpy change of Helium from inlet to and exit from Heat exchanger, (ℎ5-ℎ4) in kJ/kg, c) Mass flow rate of the helium in kg/s.arrow_forwardDetermine the temperature of the entering steam, in oC.For the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW. Step by step solution please thank you.arrow_forwardRefrigerant 22 in a refrigeration system enters one side of a counter-flow heat exchanger at 12 bar, 28°C. The refrigerant exits at 12 bar, 20°C. A separate stream of R-22 enters the other side of the heat exchanger as saturated vapor at 2 bar and exits as superheated vapor at 2 bar. The mass flow rates of the two streams are equal. Stray heat transfer from the heat exchanger to its surroundings and kinetic and potential energy effects are negligible. Determine the entropy production in the heat exchanger, in kJ/K per kg of refrigerant flowing. What gives rise to the entropy production in this application? Show state point 1 and 2, then 3 and 4 on a T-s diagram, show the process from 1 to 2 and from 3 to 4. ,(2) 12 bar 20°C 12 bar (1) 28°C (4) 2 bar (3) 2 bar sup. vapor sat. vaporarrow_forward
- A small nuclear reactor is cooled by passing liquid sodium liquid sodium out of the reactor at 2 bar and 400 ° C. It is cooled to 320 ° C by passing through a heat exchanger before returning to the reactor. In the heat exchanger heat is transferred from the sodium to the water, which enters the exchanger at 100 bar and 49 ° C and exits at the same pressure as saturated steam. The mass flow of sodium is 10,000 kg / h, its specific heat is constant and is 1.25 kJ / kg "C and the pressure drop is negligible. Determine (a) the mass flow in kg / h of evaporated water. in the heat exchanger. and (b) the heat flux transferred between the two fluids in kJ / h Neglect the variations of kinetic and potential energy through it.arrow_forwardQuestion 32arrow_forward6.107 Figure P6.107 provides the schematic of a heat pump using Refrigerant 134a as the working fluid, together with steady-state data at key points. The mass flow rate of the refrigerant is 7 kg/min, and the power input to the compressor is 5.17 kW. (a) Determine the co- efficient of performance for the heat pump. (b) If the valve were re- placed by a turbine, power could be produced, thereby reducing the power requirement of the heat pump system. Would you recommend this power-saving measure? Explain. She P2 = P3 = 9 bar Tz = 60°C Saturated liquid Condenser Expansion W = 5.17 kW Compressor valve Evaporator m= 7 kg/min P1 =P4 = 2.4 bar FIGURE P6.107arrow_forward
- Steady-state operating data are shown in the figure for an open feedwater heater.Heat transfer from the feedwater heater to its surroundings occurs at an average outer surfacetemperature of 50°C at a rate of 100 kW. Ignore the effects of motion and gravity and let T 0 =25°C, p0 = 1 bar. Determine(a) the ratio of the incoming mass flow rates, ?̇# /?̇ $ .(b) the rate of exergy destruction, in kW.arrow_forwardSteam enters a counterflow heat exchanger operating at steady state at 0.05 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.6 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible.Determine the temperature of the entering steam, in oC.For the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW.arrow_forwardSteam enters a counterflow heat exchanger operating at steady state at 0.05 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.7 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of the entering steam, in oC.For the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY