Pearson eText for Manufacturing Processes for Engineering Materials -- Instant Access (Pearson+)
6th Edition
ISBN: 9780137503520
Author: Serope Kalpakjian, Steven Schmid
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.1Q
(a)
To determine
The characteristics of an alloy.
(a)
Expert Solution
Explanation of Solution
The characteristics of an alloy are as follows.
- An alloy is a compound having two or more chemical elements, among them at least one is a metal.
- They are used to enhance the properties of pure metals.
- They could also form intermetallic compounds.
- The alloys are used to make a metal harder than before.
(b)
To determine
The characteristics of pearlite.
(b)
Expert Solution
Explanation of Solution
The characteristics of pearlite are as follows.
- It has an alternate layer of ferrite and cementite in its structure.
- It has properties between soft and ductile or hard and brittle.
- Strength of steel is formulated by the spacing of the lamellae.
- It can also be drawn into thin wires.
(c)
To determine
The characteristics of austenite.
(c)
Expert Solution
Explanation of Solution
Austenite is a form of steel used as a highly graded stainless steel. Some of the characteristics of austenite is as follows:
- It is an allotropic form of iron having an FCC crystal structure.
- This structure has a solid solubility of up to 2.11 %.
- It possesses good formability, as it becomes ductile at elevated temperature.
- Due its FCC structure it can dissolve nickel and manganese in it.
- Austenitic steel is non-magnetic at high temperatures.
(d)
To determine
The characteristics of martensite.
(d)
Expert Solution
Explanation of Solution
The characteristics of martensite are as follows.
- It is a tetragonal form of iron.
- It has the carbon present in the interstitial position thus helps to gives higher strength.
- It is formed during the process of quenching.
- The martensite form of iron is very hard and brittle in nature.
(e)
To determine
The characteristics of cementite.
(e)
Expert Solution
Explanation of Solution
The characteristics of cementite are as follows.
- It has 100% of iron carbide with carbon content of 6.67 % and is also known as carbide.
- It is very hard and brittle in nature.
- This iron carbide has an orthorhombic crystal structure.
- It can be used with different alloys like chromium and molybdenum to enhance their properties.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draw the graph of ALL the mechanisms and calculate their DoF using Gruebler's formula.
PUNTO 0.
PUNTO 1.
An adjustable support. Construction designed to carry vertical load and is adjusted by moving the blue attachment vertically. The link is articulated at both ends (free to rotate) and can therefore only transmit power axially.
Analytically calculate the force to which the link is subjected?
Calculate analytically rated voltage in the middle of the link.?
F=20kN
Alpha 30 deg
Rel 225 Mpans:5
A swivel crane where the load is moved axially along the beam through the wagon to which the hook is attached. Round bar with a diameter of ∅30 mm. The support beam is articulated at both ends (free to rotate) and can therefore only transmit force axially.
Calculate reaction force in the x-direction at point A?
Calculate analytical reaction force in the y-direction of point A?
Calculate nominal stress in the middle of the support beam?Lengt 5 mAlfa 25 degX=1.5mIPE300-steelmass:1000 kg
Chapter 5 Solutions
Pearson eText for Manufacturing Processes for Engineering Materials -- Instant Access (Pearson+)
Ch. 5 - Prob. 5.1QCh. 5 - Prob. 5.2QCh. 5 - Prob. 5.3QCh. 5 - Prob. 5.4QCh. 5 - Prob. 5.5QCh. 5 - Prob. 5.6QCh. 5 - Prob. 5.7QCh. 5 - Prob. 5.8QCh. 5 - Prob. 5.9QCh. 5 - Prob. 5.10Q
Ch. 5 - Prob. 5.11QCh. 5 - Prob. 5.12QCh. 5 - Prob. 5.13QCh. 5 - Prob. 5.14QCh. 5 - Prob. 5.15QCh. 5 - Prob. 5.16QCh. 5 - Prob. 5.17QCh. 5 - Prob. 5.18QCh. 5 - Prob. 5.19QCh. 5 - Prob. 5.20QCh. 5 - Prob. 5.21QCh. 5 - Prob. 5.22QCh. 5 - Prob. 5.23QCh. 5 - Prob. 5.24QCh. 5 - Prob. 5.25QCh. 5 - Prob. 5.26QCh. 5 - Prob. 5.27QCh. 5 - Prob. 5.28QCh. 5 - Prob. 5.29QCh. 5 - Prob. 5.30QCh. 5 - Prob. 5.31QCh. 5 - Prob. 5.32QCh. 5 - Prob. 5.33QCh. 5 - Prob. 5.34QCh. 5 - Prob. 5.35QCh. 5 - Prob. 5.36QCh. 5 - Prob. 5.37QCh. 5 - Prob. 5.38QCh. 5 - Prob. 5.39QCh. 5 - Prob. 5.40QCh. 5 - Prob. 5.41QCh. 5 - Prob. 5.42QCh. 5 - Prob. 5.43QCh. 5 - Prob. 5.44QCh. 5 - Prob. 5.45QCh. 5 - Prob. 5.46QCh. 5 - Prob. 5.47QCh. 5 - Prob. 5.48QCh. 5 - Prob. 5.49QCh. 5 - Prob. 5.50QCh. 5 - Prob. 5.51QCh. 5 - Prob. 5.52QCh. 5 - Prob. 5.53QCh. 5 - Prob. 5.54QCh. 5 - Prob. 5.55QCh. 5 - Prob. 5.56QCh. 5 - Prob. 5.57QCh. 5 - Prob. 5.58QCh. 5 - Prob. 5.59QCh. 5 - Prob. 5.60QCh. 5 - Prob. 5.61PCh. 5 - Prob. 5.62PCh. 5 - Prob. 5.63PCh. 5 - Prob. 5.64PCh. 5 - Prob. 5.65PCh. 5 - Prob. 5.66PCh. 5 - Prob. 5.67PCh. 5 - Prob. 5.68PCh. 5 - Prob. 5.69PCh. 5 - Prob. 5.70PCh. 5 - Prob. 5.71PCh. 5 - Prob. 5.72PCh. 5 - Prob. 5.73PCh. 5 - Prob. 5.74PCh. 5 - Prob. 5.75PCh. 5 - Prob. 5.76PCh. 5 - Prob. 5.77PCh. 5 - Prob. 5.78PCh. 5 - Prob. 5.79PCh. 5 - Prob. 5.80PCh. 5 - Prob. 5.81PCh. 5 - Prob. 5.82PCh. 5 - Prob. 5.83PCh. 5 - Prob. 5.84PCh. 5 - Prob. 5.85PCh. 5 - Prob. 5.86PCh. 5 - Prob. 5.87PCh. 5 - Prob. 5.88PCh. 5 - Prob. 5.89PCh. 5 - Prob. 5.90PCh. 5 - Prob. 5.91PCh. 5 - Prob. 5.92PCh. 5 - Prob. 5.93DCh. 5 - Prob. 5.94DCh. 5 - Prob. 5.95DCh. 5 - Prob. 5.96DCh. 5 - Prob. 5.97DCh. 5 - Prob. 5.98DCh. 5 - Prob. 5.99DCh. 5 - Prob. 5.100DCh. 5 - Prob. 5.101DCh. 5 - Prob. 5.102DCh. 5 - Prob. 5.103DCh. 5 - Prob. 5.104DCh. 5 - Prob. 5.105DCh. 5 - Prob. 5.106DCh. 5 - Prob. 5.107DCh. 5 - Prob. 5.108DCh. 5 - Prob. 5.109DCh. 5 - Prob. 5.110DCh. 5 - Prob. 5.111DCh. 5 - Prob. 5.112DCh. 5 - Prob. 5.113DCh. 5 - Prob. 5.114DCh. 5 - Prob. 5.115D
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- got wrong answers help pleasearrow_forwardA crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom cc00 BY NC SA ↑ Z C b B У a D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in 4.5 in The tension in rope AB is 383 x lb The tension in rope AC is 156 x lb The tension in rope AD is 156 x lbarrow_forwardA block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z C D (c, 0, d) (a, 0, b) A B y f m cc 10 BY NC SA 2016 Eric Davishahl x Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m с 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is 68.8 The compressive force in bar AB is 364 × kg. × N. The tension in cable BC is 393 × N.arrow_forward
- The airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. 0 a.) If 11.3°, determine the thrust and lift forces = required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. 20. YAAY' Farag Ө Fthrust CC + BY NC SA 2013 Michael Swanbom Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to 101,855 ☑ lbs. The lift force is equal to 141,282 ☑ lbs. Part (b) The trajectory angle 0 is equal to 7.31 ✓ deg. The lift force is equal to 143,005 ☑ lbs.arrow_forwardsimply supported beam has a concentrated moment M, applied at the left support and a concentrated force F applied at the free end of the overhang on the right. Using superposition, determine the deflection equations in regions AB and BC.arrow_forwardwhat is heat exchanger, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of heat exchanger, and how did values end up in that number. based on standards . what is dshellarrow_forward
- FIGURE P1.37 1.38 WP As shown in Figure P1.38, an inclined manometer is used to measure the pressure of the gas within the reservoir, (a) Using data on the figure, determine the gas pressure, in lbf/in.² (b) Express the pressure as a gage or a vacuum pressure, as appropriate, in lbf/in.² (c) What advantage does an inclined manometer have over the U-tube manometer shown in Figure 1.7? Patm = 14.7 lbf/in.² L I C i Gas a Oil (p = 54.2 lb/ft³) 140° 8=32.2 ft/s² 15 in.arrow_forwardwhat is an low pressure Heater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standardsarrow_forwardwhat is an air preheater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standardsarrow_forward
- Qf, Qa,Qm, Qcon,Qfg, Qbd, Qref,Qloss ( meaning, formula, percentage, and importance of higher value na qf, qa etc)arrow_forwardThe beam is supported by a fixed support at point C and a roller at point A. It also has an internal hinge at point B. The beam supports a point load at point D, a moment at point A and a distributed load on segment BC. a. calculate the support reactions at points A and C b. calculate the internal resultant loadings (N, V, M) at points E and F, which lies in the middle between points A and D P = 4 kip Ma = 5 kip-ft w1 = 3 kip/ft and w2 = 4 kip/ft a = 3 ftarrow_forwardFrom the image of the pyramid, I want to find what s1 hat, s2 hat, and s3 hat are. I think s3 hat is just equal to e3 hat right? What about the others?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Explanation of Solidification of Metals & Alloys | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=G5z9KknF_s8;License: Standard Youtube License