
Concept explainers
(a)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the sample is transferred from one container to a larger one is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
(a)

Answer to Problem 5.1P
The volume of the liquids has definite volume while the volume of gases doesn’t have a fixed volume. This is so because the volume of gas is dependent on the volume of the containers.
Explanation of Solution
The molecule of the gas moves more freely than the solid and liquids. The gas doesn’t have a definite shape and volume. The liquids have a definite volume but don’t have a fixed shape.
The volume of the gas is dependent on the volume of the containers, the volume of gas is increased as the volume of the containers increases while the liquids have fixed volume. This is so because the intermolecular forces between the gaseous molecules are weaker so, the molecules are move very fast than liquids molecules.
The volume of gases doesn’t have a fixed volume but the volume of liquids have a definite volume.
(b)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the sample heated in an expandable container is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The volume of the gas is dependent on the temperature, as the temperature increases the volume increase.
(b)

Answer to Problem 5.1P
If the sample of gas is rapidly heated in the expandable container, the volume of the gas is increased but the volume of the liquids molecule will be the same.
Explanation of Solution
The gas volume will be changed significantly with temperature. When a sample of gas is rapidly heated, the volume of expandable containers having the gas is increased. This is so because the speed of the molecule is increased and result in more collision on the wall of the container. More the collisions on the container wall, more will be the pressure exerted by the gas particles. This results to increase the volume of the gas.
When a sample of liquid is rapidly heated, the volume of expandable containers having liquids will not be changed.
As temperature increases, the volume of expandable containers having the gas is increased.
(c)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the external force applied to the piston of an expandable container is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The volume of the gas is inversely proportional to the pressure, as the pressure increases the volume decrease.
(c)

Answer to Problem 5.1P
As the pressure increases, the volume of the gas decreases while the volume of the liquid will be the same.
Explanation of Solution
The gas volume will be changed significantly with pressure. The sample of gas is present in the cylinder with a piston, as the external force applied on the piston increases, the volume of gas decreases. This is so because gases are compressible. As the pressure increases, the volume of the liquids doesn’t change because the liquids are incompressible.
Gases are compressible and the liquids are incompressible.
Want to see more full solutions like this?
Chapter 5 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- One liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forwardHow does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forwardDraw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forward
- Benzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forwardDraw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forward
- pls helparrow_forwardpls helparrow_forward35) Complete the following equation by drawing the line the structure of the products that are formed. Please note that in some cases more than one product is possible. You must draw all possible products to recive full marks! a. ethanol + 2-propanol + H2SO4 → b. OH conc. H2SO4 CH2 H3C CH + K2Cr2O7 C. d. H3C A pressure CH3 + H2 CH Pt catalystarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





