University Physics Volume 2
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 5, Problem 5.1CYU

Check Your Understanding What would be different if the election also had a positive charge?

Expert Solution & Answer
Check Mark
To determine

The difference if the electron also had a positive charge.

Answer to Problem 5.1CYU

There will be no difference if the electron also had positive charges.

Explanation of Solution

Given info:

  q1=+e=1.602×1019C

  q2=+e=1.602×1019C

  r=5.29×1011m.

Formulaused:

The magnitude of force on the charges is

  F=14πε0q1q2r2

Here, the charges on proton is q1, the charges on proton is q2, the distance between the charges is r and the dielectric constant is ε0.

Calculation:

Substituting the given values, we get

  F=14π( 8.85× 10 12 C 2 / N m 2 ) ( 1.602× 10 19 C )2 ( 5.29× 10 11 m )2=2.566× 10 38C23110.6× 10 34 C 2/N=8.25N

The magnitude of force is same as when electron had a negative charge. Opposite charges attract to each other and like charges repel each other. So, if the electron also had positive charge, this property would have been still the same. There will be no difference even if the sign of electron changes. The positive and the negative are just designations of charges.

Conclusion:

Thus, there will be no difference if the electron also had a positive charge.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.
No chatgpt pls will upvote
suggest a reason ultrasound cleaning is better than cleaning by hand?

Chapter 5 Solutions

University Physics Volume 2

Ch. 5 - How would you determine whether the charge on a...Ch. 5 - An eccentlic inventor attempts to levitate a cork...Ch. 5 - When a glass rod is lubbed with silk, it becomes...Ch. 5 - Why does a car always attract dust right after it...Ch. 5 - Does the uncharged conductor shown below...Ch. 5 - While walking on a mg, a person frequently becomes...Ch. 5 - Compare charging by conduction to charging by...Ch. 5 - Small pieces of tissue are attracted to a charged...Ch. 5 - Trucks that cany gasoline often have chains...Ch. 5 - Why do electrostatic experiments work so poorly in...Ch. 5 - Why do some clothes cling together after being...Ch. 5 - Can induction be used to produce charge on an...Ch. 5 - Suppose someone tells you that rubbing quartz with...Ch. 5 - A handheld copper rod does not acquire a charge...Ch. 5 - Suppose you place a charge q near a large metal...Ch. 5 - Would defining the charge on an electron to be...Ch. 5 - An atomic nucleus contains positively charged...Ch. 5 - Is the fore between two fixed charges influenced...Ch. 5 - When measuring an electlic field, could we use a...Ch. 5 - During fair weather, the electric field due to the...Ch. 5 - If the electric field at a point on the line...Ch. 5 - Two charges lie along the x-axis. Is it nue that...Ch. 5 - Give a plausible argument as to why the electric...Ch. 5 - Compare the electric fields of an infinite sheet...Ch. 5 - Describe the electric fields of an infinite...Ch. 5 - A negative charge is placed at center of a ring of...Ch. 5 - If a point charge is released fmm rest in a...Ch. 5 - Under what conditions, if any, will the trajectory...Ch. 5 - How would you experimentally distinguish an...Ch. 5 - A representation of an electric field shows 10...Ch. 5 - What is the ratio of the number of electlic field...Ch. 5 - What are the stable orientation(s) for a dipole in...Ch. 5 - Common static electricity involves charges ranging...Ch. 5 - If 1.801020 electrons move through a pocket...Ch. 5 - To stat a car engine, the car battery moves...Ch. 5 - A certain lightning bolt moves 40.0 C of charge....Ch. 5 - A 2.5-g copper penny is given a charge of 2.0109C...Ch. 5 - A 2.5-g copper penny is given a charge of 4.0109C...Ch. 5 - Suppose a speck of dust in an electrostatic...Ch. 5 - An amoeba has 1.001016 protons and a net charge of...Ch. 5 - A 50.0-g ball of copper has a net charge of 2.00C....Ch. 5 - What net charge would you place on a 100-g piece...Ch. 5 - How many coulombs of positive charge are there in...Ch. 5 - Two point particles with charges +3C and +5C are...Ch. 5 - Two charges +3C and +12C are fixed 1 m apart, with...Ch. 5 - In a salt crystal, the distance between adjacent...Ch. 5 - Protons in an atomic nucleus ale typically 1015 m...Ch. 5 - Suppose Earth and the Moon each carried a net...Ch. 5 - Point charges q1=50C and q2=25C are placed 1.0 m...Ch. 5 - Where must q3 of the preceding problem be placed...Ch. 5 - Two small balls, each of mass 5.0 g, are attached...Ch. 5 - Point charges q1=2.0C and q3=4.0C arelocated at...Ch. 5 - The net excess charge on two small spheres (small...Ch. 5 - Two small, identical conducting spheres repel each...Ch. 5 - A charge q=2.0C is placed at the point P shown...Ch. 5 - What is the net electric fore on the charge...Ch. 5 - Two fixed particles, each of charge 5.0106C , are...Ch. 5 - The charges q1=2.0107C, q2=4.0107C, and q3=1.0107C...Ch. 5 - What is the force on the charge q at the...Ch. 5 - Point charges q1=10C and q2=30C are fixed at...Ch. 5 - A particle of charge 2.0108C experiences an upward...Ch. 5 - On a typical clear day, the atmospheric electric...Ch. 5 - Consider an electron that is 1010 m from an alpha...Ch. 5 - Each the balls shown below carries a charge q and...Ch. 5 - What is the electric field at a point where the...Ch. 5 - A proton is suspended in the air by an electric...Ch. 5 - The electric field in a particular thundercloud is...Ch. 5 - A small piece of cork whose mass is 2.0 g is given...Ch. 5 - If the electric field is 100 N/C at a distance of...Ch. 5 - What is the electric field of a proton at the...Ch. 5 - (a) What is the electric field of an oxygen...Ch. 5 - Two point charges, q1=2.0107C and q2=6.0108C , are...Ch. 5 - Point charges q1=50C and q2=25C are placed 1.0 m...Ch. 5 - Can you arrange the two point charges q1=2.0106C...Ch. 5 - Point charges q1=q2=4.0106C are fixed on the...Ch. 5 - A thin conducting plate 1.0 m on the side is given...Ch. 5 - Calculate the magnitude and direction of the...Ch. 5 - Two thin conducting plates, each 25.0 cm on a...Ch. 5 - The charge per unit length on the thin rod shown...Ch. 5 - The charge per unit length on thin semicircular...Ch. 5 - Two thin parallel conducting plates are placed 2.0...Ch. 5 - A thin conducing plate 2.0 m on a side is given a...Ch. 5 - A total charge q is distributed uniformly along a...Ch. 5 - Charge is distributed along the entire x-axis...Ch. 5 - Charge is distributed along the entire x-axis...Ch. 5 - A rod bent into the arc of a circle subtends an...Ch. 5 - A pluton moves in the electric field E=200iN/C ....Ch. 5 - An electron and a proton, each starting from rest,...Ch. 5 - A spherical water droplet of radius 25 m carries...Ch. 5 - A proton enters the uniform electric field...Ch. 5 - Shown below is a small sphere of mass 0.25 g that...Ch. 5 - Two infinite rods, each carrying a uniform charge...Ch. 5 - Positive charge is distributed with a uniform...Ch. 5 - From a distance of 10 cm, a proton is projected...Ch. 5 - A particle of mass m and charge q moves along a...Ch. 5 - Which of the following electric field lines are...Ch. 5 - In this exercise, you practice electric field...Ch. 5 - Draw the electric field for a system of three...Ch. 5 - Two charges of equal magnitude but opposite sign...Ch. 5 - Suppose the electric field of an isolated point...Ch. 5 - Consider the equal and opposite charges shown...Ch. 5 - (a) What is the dipole moment of the configuration...Ch. 5 - A water molecule consists of two hydrogen atoms...Ch. 5 - Point charges q1=2.0C and q1=4.0C are located at...Ch. 5 - What is the force on the 5.0C charge shown below?Ch. 5 - What is the force on the charge placed at the 2.0C...Ch. 5 - Four charged particles are positioned at the...Ch. 5 - A charge Q is fixed at the origin and a second...Ch. 5 - A charge q=2.0C is released from rest when it is...Ch. 5 - What is the electric field at the midpoint M of...Ch. 5 - Find the electric field at P for the charge...Ch. 5 - (a) What is the electric field at the...Ch. 5 - Point charges are placed at the four corner of a...Ch. 5 - Three charges are positioned at the cornets of a...Ch. 5 - Prob. 119APCh. 5 - A particle of charge q and mass m is placed at the...Ch. 5 - Charge is distributed uniformly along the entire...Ch. 5 - The circular are shown below carries a charge per...Ch. 5 - Calculate the electric field due to a uniformly...Ch. 5 - The charge unit length on the thin shown below is ...Ch. 5 - The charge per unit length on the thin rod shown...Ch. 5 - The charge per unit length on the thin...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY