EBK PRINCIPLES OF FOUNDATION ENGINEERIN
8th Edition
ISBN: 9780100547056
Author: Das
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.18P
To determine
Find the ultimate uplift capacity of the square foundation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question attached
A long foundation 0.6 m wide carries a line load of 100 kN/m. Calculate the vertical stressi ncrease at a point P, the coordinates of which are x = 2.5 m, and z = 1.5m, where the x-coordinate is normal to the line load from the central line of the footing.
a. 3.05 kPa
b. 1.69 kPa
c. 4.08 kPa
d. 5.12 kPa)
e. 2.55 kPa
Problem (4.10): The foundation plan shown in the figure below is subjected to a uniform contact
pressure of 40 kN/m2. Determine the vertical stress increment due to the foundation load
at (5m) depth below the point (x).
1.5m + 1.5mk
2m
0.5m
X
2m
3m *
3m - 3m
Chapter 5 Solutions
EBK PRINCIPLES OF FOUNDATION ENGINEERIN
Knowledge Booster
Similar questions
- Consider a continuous foundation of width B = 1.4 m on a sand deposit with c = 0, = 38, and = 17.5 kN/m3. The foundation is subjected to an eccentrically inclined load (see Figure 6.33). Given: load eccentricity e = 0.15 m, Df = 1 m, and load inclination = 18. Estimate the failure load Qu(ei) per unit length of the foundation a. for a partially compensated type of loading [Eq. (6.89)] b. for a reinforced type of loading [Eq. (6.90)]arrow_forwardA square foundation is shown in Figure 4.30, with e = 0.3 m and eg = 0.15 m. Assume two-way eccentricity, and determine the ultimate load, Q %3D Sảnd 18 kN/m 30 1.5 m x 1.5 m R= 0.15 m 15 m EL 0.3 m Figure 4.30 An eccentrically loaded foundation 1.5 marrow_forwardRefer to Figure 5.2 and consider a rectangular foundation. Given: B = 1.5 m, L = 2.5 m, Df = 1.2 m, H = 0.9 m, Φ' = 40º, c' = 0, and γ = 17 kN/m3. Using a factor of safety of 3, determine the gross allowable load the foundation can carry. Use Eq. (5.3).arrow_forward
- A foundation (Figure 1) transmits a stress of 100 kPa on the surface of a soil deposit. a. Evaluate increases of vertical stresses points A, B, and C at the depth of 2m and Sm (2 points) b. At what depth is the increase in vertical stress below A less than 10% of the surface stress? 6 m +2 m- A 2 m -4 m- Figure 1: Plan of foundationarrow_forwardA long foundation 0.6 m wide carries a line load of 100 kN/m. Calculate the vertical stress σz, at a point P, the coordinates of which are x = 2.75 m, and z = 1.5 m, where the x-coordinate is normal to the line load from the central line of the footing.arrow_forwardA square foundation in a sand deposit measures 4 ft x 4 ft in plan. Given: Df = 5 ft, soil friction angle = 35°, and unit weight of soil = 112 lb/ft3. Estimate the ultimate uplift capacity of the foundation.arrow_forward
- A 8 m layer of sand, of saturated unit weight 22 kN/m3, overlies a 6 m layer of clay, of saturated unit weight 27 kN/m3. A foundation carrying 1200 KN load is to be founded on the soil layer. If the clay is normally consolidated and the increase in effective pressure due to the foundation load at the center of clay is 27 kN/m2, Soil parameters are Cc = 0.25, eo = 1.0. Assume required data •Draw the soil profile diagram in detail, mentioning all the soil properties with the foundation details. •Calculate the consolidation settlement at the center of the clay layer.arrow_forwardA foundation measuring 1.2 m x 2.4 m in plan is constructed in a saturated clay. Given: depth of embedment of the foundation = 2 m, unit weight of soil = 18 kN/m3, and undrained cohesion of clay = 74 kN/m2. Estimate the ultimate uplift capacity of the foundation.arrow_forwardProblem II. The initial principal stresses at a certain depth in a clay soil are 100 kPa on the horizontal plane and 50 kPa on the vertical plane. Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral stress of 20 kPa, and a counterclockwise (with respect to the horizontal plane) shear stress of 40 kPa. a. Plot Mohr's circle (1) for the initial state of the soil and (2) after construction of the foundation. b. Determine the change in magnitude of the principal stresses. C. the change in maximum shear stress d. the change in orientation of the principal stress plane resulting from the construction of the foundation.arrow_forward
- 9.3 Given: T- shape foundation as shown in figure is loaded with a uniform load of 120 kN/m². Required: the increment in vertical stress at point (P) at a depth of 5m. 0.6 0.6 0.6 3m m n I₁ 1.5 0.3 0.0629 0.1431 9m 1.2 3m 0.6 0.1069arrow_forwardThe initial principal stresses at a certain depth in a clay soil are 200 kPa on the horizontal plane and 100 kPa on the vertical plane. Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral (horizontal) stress of 20 kPa, and a counterclockwise (with respect to the horizontal plane) shear stress of 40 kPa. Plot Mohr's circle (1) for the initial state of the soil and (2) after construction of the foundation. Determine (a) the change in magnitude of the principal stress, (b) the change in maximum shear stress, and (c) the change in orientation of the principal stress plane resulting from the construction of the foundation.arrow_forwardPlease solve this question. Q. No. 1: A foundation 4x4 m is located at a depth of 1 m in a layer of saturated clay 13 m thick. Characteristic Parameters for the clay are cu=100 kN/m2, u=0, c'=0, '=32o, Cc=0.36, eo=0.784, NCC, sat=21 kN/m3. Determine the design load of the foundation to ensure (a) a factor of safety with respect to shear failure of 3 using the traditional method, (b) consolidation settlement does not exceed 30 mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning