Concept explainers
5-16 Answer true or false.
(a) For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.
(b) For a sample of gas at constant temperature, increasing the pressure increases the volume.
(c) For a sample of gas at constant temperature,
(d) As a gas expands at constant temperature, its volume increases.
(e) The volume of a sample of gas at constant pressure is directly proportional to its temperature—the higher its temperature, the greater its volume.
(f) A hot-air balloon rises because hot air is less dense than cooler air.
(g) For a gas sample in a container of fixed volume, an increase in temperature results in an increase in pressure.
(h) For a gas sample in a container of fixed volume, is a constant.
(i) When steam at 100°C in an autoclave is heated to 1200C, the pressure within the autoclave increases.
(j) When a gas sample in a flexible container at constant pressure at 25°C is heated to 50°C, its volume doubles.
(k) Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease.
(l) Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs.
(a)
Interpretation:
Find if the given statement is true or false.
“For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant, the given statement is true.
Explanation of Solution
Given information:
For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.
We know, according to Boyle’s Law, we have.
Thus, for a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.
(b)
Interpretation:
Find if the given statement is true or false.
“For a sample of gas at constant temperature, increasing the pressure increases the volume.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
For a sample of gas at constant temperature, increasing the pressure decreases the volume thus, the given statement is false.
Explanation of Solution
Given Information:
For a sample of gas at constant temperature, increasing the pressure increases the volume.
We know, according to Boyle’s Law, we have.
That means there is an inverse relationship between volume and pressure at constant temperature. When pressure is increased, volume is decreased and vice versa.
Thus, for a sample of gas at constant temperature, increasing the pressure decreases the volume.
(c)
Interpretation:
Find if the given statement is true or false.
“For a sample of gas at constant temperature,
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
For a sample of gas at constant temperature,
Explanation of Solution
Given Information:
For a sample of gas at constant temperature,
We know, according to Boyle’s Law, we have.
We two different sets of volume and pressure of the gas is considered, the above equation becomes as follows:
where
Thus, for a sample of gas at constant temperature,
(d)
Interpretation:
Find if the given statement is true or false.
“As a gas expands at constant temperature, its volume increases.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
As a gas expands at constant temperature, its volume increases. Thus, the given statement is true.
Explanation of Solution
Given Information:
As a gas expands at constant temperature, its volume increases.
When a gas expands, the distance between the gas particles increases. Thus, pressure decreases.
Also, we know, according to Boyle’s Law.
Decrease in pressure increases the volume.
Thus, as a gas expands at constant temperature, its volume increases.
(e)
Interpretation:
Find if the given statement is true or false.
“The volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume.”
Concept Introduction:
According to Charles’s Law, for the gas held at constant pressure, the volume of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
The volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume. Thus, the given statement is true.
Explanation of Solution
Given Information:
The volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume.
We know, according to Charles’s Law, we have.
There is a direct relationship between volume and temperature. As the temperature is increased, the volume is also increased.
Thus, the volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume.
(f)
Interpretation:
Find if the given statement is true or false.
“A hot-air balloon rises because hot air is less dense than cooler air”.
Concept Introduction:
Hot air rises because when the air is heated, it undergoes expansion. This results in the air to become less dense than the air surrounding it.
Answer to Problem 5.16P
A hot-air balloon rises because hot air is less dense than cooler air, thus, the given statement is true.
Explanation of Solution
Given information:
A hot-air balloon rises because hot air is less dense than cooler air.
Hot air rises because when the air is heated, it undergoes expansion. This results in the air to become less dense than the air surrounding it.
Thus, a hot-air balloon rises because hot air is less dense than cooler air.
(g)
Interpretation:
Find if the given statement is true or false.
“For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.”
Concept Introduction:
According to Gay-Lussac’s Law, for the gas held at constant volume, the pressure of a given amount of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure. Thus, the given statement is true.
Explanation of Solution
Given information:
For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.
We know, according to Gay Lussac’s Law, we have.
There is a direct relationship between pressure and temperature. As the temperature is increased, the pressure is also increased.
Thus, for a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.
(h)
Interpretation:
Find if the given statement is true or false.
“For a gas sample in a container of fixed volume,
Concept Introduction:
According to Gay-Lussac’s Law, for the gas held at constant volume, the pressure of a given amount of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
For a gas sample in a container of fixed volume,
Explanation of Solution
Given information:
For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.
We know, according to Gay Lussac’s Law, we have.
Thus, for a gas sample in a container of fixed volume,
(i)
Interpretation:
Find if the given statement is true or false.
“When steam at
Concept Introduction:
According to Gay-Lussac’s Law, for the gas held at constant volume, the pressure of a given amount of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
When steam at
Explanation of Solution
Given Information:
When steam at
We know, according to Gay Lussac’s Law, we have.
There is a direct relationship between pressure and temperature. As the temperature is increased, the pressure is also increased.
Thus, when steam at
(j)
Interpretation:
Find if the given statement is true or false.
“When a gas sample in a flexible container at constant pressure at
Concept Introduction:
According to Charles’s Law, for the gas held at constant pressure, the volume of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
When a gas sample in a flexible container at constant pressure at
Explanation of Solution
Given Information:
When a gas sample in a flexible container at constant pressure at
We know, according to Charles’s Law, we have.
There is a direct relationship between volume and temperature. As the temperature is increased, the volume is also increased.
Now, the temperature of the container is doubled, hence the volume of the flexible container is also doubled.
Thus, when a gas sample in a flexible container at constant pressure at
(k)
Interpretation:
Find if the given statement is true or false.
“Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease”.
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease thus, the given statement is true.
Explanation of Solution
Given information:
Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease.
We know, according to Boyle’s Law, we have.
Now, when diaphragm is lowered, the chest cavity is increased. This results in the increase in volume and hence pressure decreases inside the lungs.
(l)
Interpretation:
Find if the given statement is true or false.
“Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs. Thus, the given statement is true.
Explanation of Solution
Given information:
Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs.
We know, according to Boyle’s Law, we have.
Now, when diaphragm is raised, the volume chest cavity is decreased. This results in the decrease in volume and hence pressure increased inside the lungs and air is moved out of the lungs.
Want to see more full solutions like this?
Chapter 5 Solutions
Student Solutions Manual for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th
- Calculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forwardGeneral formula etherarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forward
- Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward(please correct answer and don't used hand raiting) Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forwardCaTiO3 has a perovskite structure. Calculate the packing factor.Data: ionic radii Co+2 = 0.106 nm, Ti+4 = 0.064 nm, O-2 = 0.132 nm; lattice constant is a = 2(rTi4+ + rO-2).(a) 0.581(b) -0.581(c) 0.254(d) -0.254arrow_forward
- In the initial linear section of the stress-strain curve of a metal or alloy. Explain from the point of view of atomic structure?(a) No, the atomic level properties of the material can never be related to the linear section.(b) The elastic zone is influenced by the strength of the bonds between atoms.(c) The stronger the bond, the less rigid and the lower the Young's Modulus of the material tested.(d) The stronger the bond, the less stress is necessary to apply to the material to deform it elastically.arrow_forwardThe degree of polymerization of polytetrafluoroethylene (Teflon) is 7500 (mers/mol). If all polymer chains have equal length, state the molecular weight of the polymer and the total number of chains in 1000 g of the polymer(a) 50 000 g/mol; 0.03·1020 chains(b) 100 000 g/mol; 1.03·1020 chains(c) 750 000 g/mol; 8.03·1020 chainsarrow_forwardIn natural rubber or polyisoprene, the trans isomer leads to a higher degree of crystallinity and density than the cis isomer of the same polymer, because(a) it is more symmetrical and regular.(b) it is less symmetrical.(c) it is irregular.arrow_forward
- Most ceramic materials have low thermal conductivities because:(a) Electron mobility is strongly restricted due to their strong ionic-covalent bonding.(b) False, in general they are excellent thermal conductors (they are used in ovens).(c) Electron mobility is dependent on T and therefore they are poor conductors at high temperatures.(d) Electron mobility is very restricted by secondary bonds.arrow_forwardResistivity and electrical conductivity.(a) In metals, resistivity decreases.(b) In metals, resistivity decreases and conductivity in semiconductors also decreases with increasing temperature.(c) With increasing temperature, resistivity in metals and conductivity in semiconductors also increases.(d) None of the above.arrow_forwardState the difference between concrete and Portland cement.(a) There are no differences, in concrete the chemical composition is silicates and in cement aluminates.(b) The chemical composition of concrete is based on silicates and in cement aluminates.(c) Concrete is composed of aggregates bound by cement and cement "only" contains different minerals.(d) Cement is aggregates bound by concrete.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning