Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
6th Edition
ISBN: 9781337761505
Author: William T. Segui
Publisher: Cengage Learning
Question
Book Icon
Chapter 5, Problem 5.15.6P
To determine

(a)

Whether a W6×12 is adequate or not by using LRFD

Expert Solution
Check Mark

Answer to Problem 5.15.6P

Adequate

Explanation of Solution

Given:

Total gravity load = 40 psf of roof surface

W6×12 of A992 steel

Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card, Chapter 5, Problem 5.15.6P , additional homework tip  1

Formula used:

Lp=1.76ryEFy

Lpis unbraced length in an inelastic behavior

c=h02IyCw

Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2

Lris unbraced length in an elastic behavior

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp

Mn is nominal moment strength

Mpis plastic moment capacity

Calculation:

Determine the nominal flexural strength about x and y axes:

Neither the beam design charts nor the Z tables include shapes smaller than W8, so the flexural strength of the W6×12 must be computed.

From the dimensions and properties tables, the shape is compact.

The following properties of a W6×12 are below:

A=3.55in.2rts=1.08in.h0=5.75in.Sx=7.31in.3Zx=8.30in.3Iy=2.99in.4ry=0.918in.J=0.0903in.4Sy=1.50in.3

A is Cross-sectional area

Sxis Elastic section modulus about X -axis

Zxis Plastic section modulus about X -axis

Iyis Moment of inertia about Y -axis

ryis Radius of gyration about Y -axis

Syis Elastic section modulus about Y -axis

rts is IyCwSx

Cwis Warping constant

h0is Distance between centroid of flanges

J is Torsional moment of inertia

Lp=1.76ryEFy=1.76(0.918)2900050=38.91in.=3.243ftLr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2=1.95(1.08)290000.7(50)0.0903×17.31×5.75+(0.0903×17.31×5.75)2+6.76(0.7(50)29000)2=134.6in.=11.22ft.

For Lb=14ft, Lp<Lb<Lr, so

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

From the below given figure in the textbook, Cb=1.14

Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card, Chapter 5, Problem 5.15.6P , additional homework tip  2

Mp=FyZx=50(8.30)=415inkips=34.58ftkipsMn=1.14[415(4150.7×50×7.31)(103.2311.223.243)]=319.4inkips=26.62ftkips<Mp

For the y axis, since the shape is compact, there is no flange local buckling

Mny=Mpy=FyZy=50(2.32)=116inkips=9.667ftkips

Check the upper limit:

ZySy=2.321.50=1.55<1.6Mny=Mpy=9.667ftkipsϕbMnx=0.90(26.62)=23.96ftkipsϕbMny=0.90(9.667)=8.7ftkips

Roof load: Combination 3 controls

wu=1.2D+1.6S=1.2×402+1.6×402=56psf

where,D is dead load and S is snow load

Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card, Chapter 5, Problem 5.15.6P , additional homework tip  3

Tributary width = 174(6)=6.185ft

Purlin load = 56(6.185)=346.4lb/ft

Component normal to roof = wux=417(346.4)=336.1lb/ft

Component parallel to roof = wuy=117(346.4)=84.01lb/ft

Calculate factored bending moment about x axis and y axis

Mux=wuxL28=0.3361(10)28=4.201ftkipsMuy=wuyL28=0.08401(10)28=1.05ftkips

Use ½ of weak-axis bending strength in the interaction equation:

MuxϕbMnx+MuyϕbMny=4.20123.96+1.058.7/2=0.417<1.0 (OK)

Conclusion:

W6×12 is adequate.

To determine

(b)

Whether a W6×12 is adequate or not by using ASD

Expert Solution
Check Mark

Answer to Problem 5.15.6P

Adequate

Explanation of Solution

Given:

Total gravity load = 40 psf of roof surface

W6×12 of A992 steel

Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card, Chapter 5, Problem 5.15.6P , additional homework tip  4

Formula used:

Lp=1.76ryEFy

Lpis unbraced length in an inelastic behavior

c=h02IyCw

Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2

Lris unbraced length in an elastic behavior

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp

Mn is nominal moment strength

Mpis plastic moment capacity

Calculation:

Determine the nominal flexural strength about x and y axes:

Neither the beam design charts nor the Z tables include shapes smaller than W8, so the flexural strength of the W6×12 must be computed.

From the dimensions and properties tables, the shape is compact.

The following properties of a W6×12 are below:

A=3.55in.2rts=1.08in.h0=5.75in.Sx=7.31in.3Zx=8.30in.3Iy=2.99in.4ry=0.918in.J=0.0903in.4Sy=1.50in.3

A is Cross-sectional area

Sxis Elastic section modulus about X -axis

Zxis Plastic section modulus about X -axis

Iyis Moment of inertia about Y -axis

ryis Radius of gyration about Y -axis

Syis Elastic section modulus about Y -axis

rts is IyCwSx

Cwis Warping constant

h0is Distance between centroid of flanges

J is Torsional moment of inertia

Lp=1.76ryEFy=1.76(0.918)2900050=38.91in.=3.243ftLr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2=1.95(1.08)290000.7(50)0.0903×17.31×5.75+(0.0903×17.31×5.75)2+6.76(0.7(50)29000)2=134.6in.=11.22ft.

For Lb=14ft, Lp<Lb<Lr, so

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

From the below given figure in the textbook, Cb=1.14

Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card, Chapter 5, Problem 5.15.6P , additional homework tip  5

Mp=FyZx=50(8.30)=415inkips=34.58ftkipsMn=1.14[415(4150.7×50×7.31)(103.2311.223.243)]=319.4inkips=26.62ftkips<Mp

For the y axis, since the shape is compact, there is no flange local buckling

Mny=Mpy=FyZy=50(2.32)=116inkips=9.667ftkips

Check the upper limit:

ZySy=2.321.50=1.55<1.6Mny=Mpy=9.667ftkipsMnxΩb=26.621.67=15.94ftkips

Roof load: Combination 3 controls

wa=D+S=402+402=40psf

where, D is dead load and S is snow load

Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card, Chapter 5, Problem 5.15.6P , additional homework tip  6

Tributary width = 174(6)=6.185ft

Purlin load = 40(6.185)=247.4lb/ft

Component normal to roof = wax=417(247.4)=240lb/ft

Component parallel to roof = way=117(247.4)=60lb/ft

Calculate factored bending moment about x axis and y axis

Max=waxL28=0.24(10)28=3ftkipsMay=wayL28=0.06(10)28=0.75ftkips

Use ½ of weak - axis bending strength in the interaction equation:

MaxMnx/Ωb+MayMny/Ωb=315.94+0.755.789/2=0.447<1.0 (OK)

Conclusion:

W6×12 is not adequate.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
K Course Code CE181303 Course Title Hours per week L-T-P Credit C Fluid Mechanics 3-1-0 MODULE 1: Fluid Properties: Fluid-definition, types; physical properties of fluid-density, specific weight, specific volume, specific gravity, viscosity- Newton's law of viscosity, surface tension, compressibility of fluids, capillarity. MODULE 2: Fluid Statics: Hydrostatic pressure, pressure height relationship, absolute and gauge pressure, measurement of pressure-manometer, pressure on submerged plane and curved surfaces, centre of pressure; buoyancy, equilibrium of floating bodies, metacentre; fluid mass subjected to accelerations. MODULE 3: Fluid Kinematics: Types of motion- steady and unsteady flow, uniform and no uniform flow, laminar and turbulent flow, and path lines, stream tube, stream function compressible and incompressible flow, one, two & three dimensional flow; stream lines, streak lines and velocity potential, flow net and its drawing: free and forced vortex. MODITE Q. A closed…
H.W: For the tank shown in figure below, Find The amount of salt in the tank at any time. Ans: x = 2(100+t) 1500000 (100 + t)² Qin = 3 L/min Cin = 2 N/L V = 100 L Xo=50N Qout = 2 L/min Cout? 33
- Find reactions and draw Shear and Bending Moment Diagram. 30 N 15 N/m D B A 2 m 1 m 2 mm

Chapter 5 Solutions

Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning