
Concept explainers
(a)
The recovery of plastic B in the overflow.

Answer to Problem 5.13P
The recovery of plastic B in the overflow is
Explanation of Solution
Given:
The feed rate is
The overflow rate is
Concept Used:
Write the equation to calculate percentage of recovery
Here, the percentage of recovery of plastic B is
Calculation:
Calculate the percentage of recovery of plastic B.
Substitute for
Conclusion:
Thus, the recovery of plastic B in the overflow is
(b)
The purity of plastic B in the overflow.

Answer to Problem 5.13P
The purity of plastic B in the overflow is
Explanation of Solution
Given:
The overflow rate of plastic A is
The overflow rate of plastic B is
The overflow rate of plastic C is
Concept Used:
Write the equation to calculate percentage of purity.
Here, the percentage of recovery of plastic B is
Calculation:
Calculate the percentage of purity of plastic B.
Substitute
Conclusion:
Thus, the purity of plastic B in the overflow is
(c)
The time taken by the plastic B to reach the top.

Answer to Problem 5.13P
The time taken by plastic B to reach the top is
Explanation of Solution
Given:
The density of fluid is
The viscosity of fluid is
The diameter of plastic is
The distance is
The density of material is
Concept Used:
Write the equation to calculate the time taken.
Here, the time is
Calculation:
Calculate the terminal velocity by using Stock’s Law.
Here, the diameter of particle is
Calculate the terminal velocity.
Convert the unit of viscosity from
Substitute
Calculate the time taken by the plastic B to reach the top.
Substitute
Conclusion:
Thus, the time taken by plastic B to reach the top is
Want to see more full solutions like this?
Chapter 5 Solutions
Solid Waste Engineering
- The head-vs-capacity curves for two centrifugal pumps A and B are shown below: Which of the following is a correct statement at a flow rate of 600 ft3/min? Assuming a pump efficiency of 80%. Head [ft] 50 45 40 35- 30 25 20 15 10 5. 0 0 Pump B Pump A 100 200 300 400 500 600 700 800 900 1000arrow_forwardSolve for reactions and shear and moment diagram (base the answer on the 2nd figure). Hand Calculation 2. Note: Assume bottom left support as roller, bottom right support as pinned 4 kN/m 3 kN/m 8m 4m 2marrow_forwardYour client wants to build a WTP that has a withdraw of 440 MGD. What is the exceedance probability in percentage? Average Monthly Minimum Flow of Record Month (MGD) Jan-73 322 Feb-73 280 Mar-73 335 Apr-73 374 May-73 440 Mar-74 313 Apr-74 375 May-74 560 Jun-74 380 Jul-74 445 Aug-74 323 Sep-74 411 Oct-74 541 Nov-74 510 Jan-75 261 Feb-75 271 May-75 312 Jun-75 314 351 Jul-75 Aug-75 332arrow_forward
- If a second 12.25" pump was added in parallel what would be the NPSHr be while both pumps are running? HEAD (Feet) 250- 200- Pump Series: VSX-VSC 10x12x13-1/2A 1780 RPM 13.5" 60% 70% -75% 80% 83% -85.5%- 150- 12.25" 100- 50 50- 10" 0- 2,000 NPSHr 83%. 80% 300HP- -75% 250HP 200HP 70% 150HP 125HP 100HP NPSHr(ft) 0 4,000 6,000 8,000 Capacity (GPM) 80 90 8arrow_forwardSolve for reactions and shear and moment diagram (base the answer on the 2nd figure) 1. Note: Assume bottom support as pinned 14 kN/m 16 kN 6m 5m 3m- 6marrow_forwardA plant treats 25 MGD at 5°C and pH=7.0. The plant uses ozone before the filter and free chlorine after the filter. The ozone contactor has a t10 of 3 minutes and a residual concentration of 0.3 mg/L. The free chlorine contact basin is 65 ft by 214 ft by 10 ft and a baffle factor of 0.5 and a residual concentration of 1.4 mg/Larrow_forward
- A3-inch diameter water pipe carries a flow rate of 6 gallons per minute. The pipe is 100 feet long and has a gate valve, two 45-degree elbows, and a sudden c factor for the pipe is 0.02 and the minor loss coefficients for the gate valve, elbows, and contraction are 12, 1.5, and 0.5, respectively. Determine the head loss due to friction and minor losses in the pipe, assuming the water temperature is 68°F and the density of water is 62.4 barrow_forwardBased on ONLY on the diagram below, how much energy is the pump adding to the system. The pressure gauge Reads 60 psi 20 feet 30 feet 5 feet 1 foot 2 feetarrow_forwardA confined aquifer has a differential drawdown (Ah) of 5 feet. The flow rate (Q) is measured to be 10 gpm. Calculate the transmissivity (T) of the aquifer in gpd/ft.arrow_forward
- Match the term from the Clean Water Act with its corresponding definitions National Pollutant Discharge Elimination System (NPDES) Total Maximum Daily Load (TMDL) Best Available Technology (BAT) Point source pollution A The maximum amount of a pollutant that a water body can receive while still meeting water quality standards. B. A permit program that regulates the discharge of pollutants from point sources into the waters of the United States. C. A specific location, such as a pipe or ditch, from which pollutants are discharged into a water body. D. A technology or treatment method that is determined to be the most effective way to control pollutants based on factors such as cost and feasibility.arrow_forwardEach gate of the lock is 6 m high and is supported by two hinges placed on the top and bottom of the gate. When the gates are closed, they make an angle of 120º. The weight of the lock is 5 m. If the water levels are 4 m and 2 m upstream and downstream, respectively, determine the magnitude of forces on hinges due to the water pressure.arrow_forwardQuestion 5 A submerged sharp crested weir 0.8 m high stands clear across a channel having vertical sides and a width of 3 m. The depth of water in the channel of approach is 1.25 m and 10 m downstream from the weir, the depth of water is 1 m. Determine the discharge over the weir in liters per second. Take Cd as 0.6arrow_forward
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





