A First Course In Probability, Global Edition
10th Edition
ISBN: 9781292269207
Author: Ross, Sheldon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.12TE
Use the identity of Theoretical Exercises 5.5 &I to derive
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Pls help
Suppose that a sequence of mutually independent and identically distributed discrete random
variables X₁, X₂, X3,..., X₁ has the following probability density function
(exe-e
x!
0,
f(x; 0) =
for x = 0,1,2,...
elsewhere
The positive random variable X is said to be a log-normal random variable with parameters μ and σ2 if log(X) is a normal random variable with mean μ and variance σ2. Use the normal
moment generating function to find the mean and variance of a lognormal random variable.
Hint: Let Y = log(X ) and find E[X ].
Chapter 5 Solutions
A First Course In Probability, Global Edition
Ch. 5 - Let X be a random variable with probability...Ch. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - The probability density function of X. the...Ch. 5 - Prob. 5.5PCh. 5 - Compute E[X] if X has a density function given by...Ch. 5 - The density function of X is given by...Ch. 5 - The lifetime in hours of an electronic tube is a...Ch. 5 - Consider Example 4b &I of Chapter 4 &I, but now...Ch. 5 - Trains headed for destination A arrive at the...
Ch. 5 - A point is chosen at random on a line segment of...Ch. 5 - A bus travels between the two cities A and B....Ch. 5 - You arrive at a bus stop at 10A.M., knowing that...Ch. 5 - Let X be a uniform (0, 1) random variable. Compute...Ch. 5 - If X is a normal random variable with parameters...Ch. 5 - The annual rainfall (in inches) in a certain...Ch. 5 - The salaries of physicians in a certain speciality...Ch. 5 - Suppose that X is a normal random variable with...Ch. 5 - Let be a normal random variable with mean 12 and...Ch. 5 - If 65 percent of the population of a large...Ch. 5 - Suppose that the height, in inches, of a...Ch. 5 - Every day Jo practices her tennis serve by...Ch. 5 - One thousand independent rolls of a fair die will...Ch. 5 - The lifetimes of interactive computer chips...Ch. 5 - Each item produced by a certain manufacturer is,...Ch. 5 - Two types of coins are produced at a factory: a...Ch. 5 - In 10,000 independent tosses of a coin, the coin...Ch. 5 - Twelve percent of the population is left handed....Ch. 5 - A model for the movement of a stock supposes that...Ch. 5 - An image is partitioned into two regions, one...Ch. 5 - a. A fire station is to be located along a road of...Ch. 5 - The time (in hours) required to repair a machine...Ch. 5 - If U is uniformly distributed on (0,1), find the...Ch. 5 - Jones figures that the total number of thousands...Ch. 5 - Prob. 5.35PCh. 5 - The lung cancer hazard rate (t) of a t-year-old...Ch. 5 - Suppose that the life distribution of an item has...Ch. 5 - If X is uniformly distributed over (1,1), find (a)...Ch. 5 - Prob. 5.39PCh. 5 - If X is an exponential random variable with...Ch. 5 - If X is uniformly distributed over(a,b), find a...Ch. 5 - Prob. 5.42PCh. 5 - Find the distribution of R=Asin, where A is a...Ch. 5 - Let Y be a log normal random variable (see Example...Ch. 5 - The speed of a molecule in a uniform gas at...Ch. 5 - Show that E[Y]=0P{Yy}dy0P{Yy}dy Hint: Show that...Ch. 5 - Show that if X has density function f. then...Ch. 5 - Prob. 5.4TECh. 5 - Use the result that for a nonnegative random...Ch. 5 - Prob. 5.6TECh. 5 - The standard deviation of X. denoted SD(X), is...Ch. 5 - Let X be a random variable that takes on values...Ch. 5 - Show that Z is a standard normal random variable;...Ch. 5 - Let f(x) denote the probability density function...Ch. 5 - Let Z be a standard normal random variable Z and...Ch. 5 - Use the identity of Theoretical Exercises 5.5 .Ch. 5 - The median of a continuous random variable having...Ch. 5 - The mode of a continuous random variable having...Ch. 5 - If X is an exponential random variable with...Ch. 5 - Compute the hazard rate function of X when X is...Ch. 5 - If X has hazard rate function X(t), compute the...Ch. 5 - Prob. 5.18TECh. 5 - If X is an exponential random variable with mean...Ch. 5 - Prob. 5.20TECh. 5 - Prob. 5.21TECh. 5 - Compute the hazard rate function of a gamma random...Ch. 5 - Compute the hazard rate function of a Weibull...Ch. 5 - Prob. 5.24TECh. 5 - Let Y=(Xv) Show that if X is a Weibull random...Ch. 5 - Let F be a continuous distribution function. If U...Ch. 5 - If X is uniformly distributed over (a,b), what...Ch. 5 - Consider the beta distribution with parameters...Ch. 5 - Prob. 5.29TECh. 5 - Prob. 5.30TECh. 5 - Prob. 5.31TECh. 5 - Let X and Y be independent random variables that...Ch. 5 - Prob. 5.33TECh. 5 - The number of minutes of playing time of a certain...Ch. 5 - For some constant c. the random variable X has the...Ch. 5 - Prob. 5.3STPECh. 5 - Prob. 5.4STPECh. 5 - The random variable X is said to be a discrete...Ch. 5 - Prob. 5.6STPECh. 5 - To be a winner in a certain game, you must be...Ch. 5 - A randomly chosen IQ test taker obtains a score...Ch. 5 - Suppose that the travel time from your home to...Ch. 5 - The life of a certain type of automobile tire is...Ch. 5 - The annual rainfall in Cleveland, Ohio, is...Ch. 5 - Prob. 5.12STPECh. 5 - Prob. 5.13STPECh. 5 - Prob. 5.14STPECh. 5 - The number of years that a washing machine...Ch. 5 - Prob. 5.16STPECh. 5 - Prob. 5.17STPECh. 5 - There are two types of batteries in a bin. When in...Ch. 5 - Prob. 5.19STPECh. 5 - For any real number y define byy+=y,ify00,ify0 Let...Ch. 5 - With (x) being the probability that a normal...Ch. 5 - Prob. 5.22STPECh. 5 - Letf(x)={13ex1313e(x1)ifx0if0x1ifx1 a. Show that f...Ch. 5 - Prob. 5.24STPE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Recall that the general form of a logistic equation for a population is given by P(t)=c1+aebt , such that the initial population at time t=0 is P(0)=P0. Show algebraically that cP(t)P(t)=cP0P0ebt .arrow_forwardLet X have the pdf f(x) = B¬l exp{-x/ß}, 0arrow_forwardTF.8arrow_forwardConsider the function: f(x)= −1 − x^2 Which of the following is true? A. This function is a pdf only for some values of random variable B. This function cannot be a pdf for any set of values of random variable C. None of these D. This function is a pdf for any set of values of random variable.arrow_forwardIf X₁, X2,..., Xn constitute a random sample of size n from an exponential population, show that X is a sufficient estimator of the parameter 0.arrow_forwardPlease give handwrittenarrow_forwardIf X1, X2, ... , Xn constitute a random sample of size n from an exponential population, show that X is a consis-tent estimator of the parameter θ.arrow_forwardSuppose X is a random variable, whose pdf is defined as follows: 2x = (²x) (u(x) - u(x − 3)) where u(x) is the unit step function. Determine the conditional pdf fx(x 1arrow_forwardSuppose a random variable X has a PDF 1 fx(x) = -ae ₂-a[r], -∞ 0. This is called the double exponential (or Laplace) distribution. Find the following PDF for each of the following transformations: (1) Y = |X|; (2) Y = X².arrow_forwardConsider that a pdf of a random variable X is 1 -25x53 fx (x) ={K otherwise and another random variable Y = 2X. Then find (a) value K, (b) E[X], (c) E[Y] and ( d) EΧΥ.arrow_forwardExample 4.10 Let X be a continuous random variable with PDF 1 fx(x) for all æ ER and let Y = X². Find fy(y).arrow_forwardprove the below Theorems (mean and variance of each) If Y is an exponential random variable with parameter B, then u = E(Y) = B and o = V(r) = B. The proof follows directly from Theorem 4.8 with a = 1.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License