Organic Chemistry
Organic Chemistry
8th Edition
ISBN: 9781337516402
Author: Brown
Publisher: Cengage
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.10P

(a)

Interpretation Introduction

Interpretation:

Atomic orbitals which are used to form each σ and π bond have to be identified for the highlighted carbon atom of the given compound.

Concept Introduction:

Hybridization is the mixing of valence atomic orbitals to get equivalent hybridized orbitals that having similar characteristics and energy.

Sigma (σ) bonds are the bonds in which shared hybrid orbital’s electron density are concentrated along the internuclear axis.

Pi (π) bonds are the bonds in which shared unhybridized orbital’s (p, d, etc) electron density are concentrated in above and below of the plane of the molecule.

  TypeofBondNo.ofσbondsNo.ofπbondsSingle10Double11Triple12

Geometry of different types of molecule with respect to the hybridizations are mentioned are mentioned below,

TypeofmoleculeHybridaizationAtomicorbitalsusedforhybridaizationGeometryAX2sp1s+1pLinearAX3,AX2Bsp21s+2pTrigonalplanarAX4,AX3B,AX2B2sp31s+3pTetrahedralAX5,AX4B,AX3B2,AX2B3sp3d1s+3p+1dTrigonalbipyramidalAX6,AX5B,AX4B2sp3d21s+3p+2dOctahedralACentralatomXAtomsbondedtoABNonbondingelectronpairsonA

(a)

Expert Solution
Check Mark

Explanation of Solution

In the marked carbon atom, one s and three p orbital hybridize forming four sp3 orbitals. Atomic orbitals are used to form each σ and π bond for the highlighted carbon atom can be given as,

Organic Chemistry, Chapter 5, Problem 5.10P , additional homework tip  1

In the marked carbon atom, one s and two p orbital hybridize forming three sp2 orbitals. Atomic orbitals are used to form each σ and π bond for the highlighted carbon atom can be given as,

Organic Chemistry, Chapter 5, Problem 5.10P , additional homework tip  2

(b)

Interpretation Introduction

Interpretation:

Atomic orbitals which are used to form each σ and π bond have to be identified for the highlighted carbon atom of the given compound.

Concept Introduction:

Hybridization is the mixing of valence atomic orbitals to get equivalent hybridized orbitals that having similar characteristics and energy.

Sigma (σ) bonds are the bonds in which shared hybrid orbital’s electron density are concentrated along the internuclear axis.

Pi (π) bonds are the bonds in which shared unhybridized orbital’s (p, d, etc) electron density are concentrated in above and below of the plane of the molecule.

  TypeofBondNo.ofσbondsNo.ofπbondsSingle10Double11Triple12

Geometry of different types of molecule with respect to the hybridizations are mentioned are mentioned below,

TypeofmoleculeHybridaizationAtomicorbitalsusedforhybridaizationGeometryAX2sp1s+1pLinearAX3,AX2Bsp21s+2pTrigonalplanarAX4,AX3B,AX2B2sp31s+3pTetrahedralAX5,AX4B,AX3B2,AX2B3sp3d1s+3p+1dTrigonalbipyramidalAX6,AX5B,AX4B2sp3d21s+3p+2dOctahedralACentralatomXAtomsbondedtoABNonbondingelectronpairsonA

(b)

Expert Solution
Check Mark

Explanation of Solution

In the marked carbon atom, one s and two p orbital hybridize forming three sp2 orbitals. Atomic orbitals are used to form each σ and π bond for the highlighted carbon atom can be given as,

Organic Chemistry, Chapter 5, Problem 5.10P , additional homework tip  3

(c)

Interpretation Introduction

Interpretation:

Atomic orbitals which are used to form each σ and π bond has to be identified for the highlighted carbon atom of the given compound.

Concept Introduction:

Hybridization is the mixing of valence atomic orbitals to get equivalent hybridized orbitals that having similar characteristics and energy.

Sigma (σ) bonds are the bonds in which shared hybrid orbital’s electron density are concentrated along the internuclear axis.

Pi (π) bonds are the bonds in which shared unhybridized orbital’s (p, d, etc) electron density are concentrated in above and below of the plane of the molecule.

  TypeofBondNo.ofσbondsNo.ofπbondsSingle10Double11Triple12

Geometry of different types of molecule with respect to the hybridizations are mentioned are mentioned below,

TypeofmoleculeHybridaizationAtomicorbitalsusedforhybridaizationGeometryAX2sp1s+1pLinearAX3,AX2Bsp21s+2pTrigonalplanarAX4,AX3B,AX2B2sp31s+3pTetrahedralAX5,AX4B,AX3B2,AX2B3sp3d1s+3p+1dTrigonalbipyramidalAX6,AX5B,AX4B2sp3d21s+3p+2dOctahedralACentralatomXAtomsbondedtoABNonbondingelectronpairsonA

(c)

Expert Solution
Check Mark

Explanation of Solution

In the marked carbon atom, one s and two p orbital hybridize forming three sp2 orbitals. Atomic orbitals are used to form each σ and π bond for the highlighted carbon atom can be given as,

Organic Chemistry, Chapter 5, Problem 5.10P , additional homework tip  4

(d)

Interpretation Introduction

Interpretation:

Atomic orbitals which are used to form each σ and π bond has to be identified for the highlighted carbon atom of the given compound.

Concept Introduction:

Hybridization is the mixing of valence atomic orbitals to get equivalent hybridized orbitals that having similar characteristics and energy.

Sigma (σ) bonds are the bonds in which shared hybrid orbital’s electron density are concentrated along the internuclear axis.

Pi (π) bonds are the bonds in which shared unhybridized orbital’s (p, d, etc) electron density are concentrated in above and below of the plane of the molecule.

  TypeofBondNo.ofσbondsNo.ofπbondsSingle10Double11Triple12

Geometry of different types of molecule with respect to the hybridizations are mentioned are mentioned below,

TypeofmoleculeHybridaizationAtomicorbitalsusedforhybridaizationGeometryAX2sp1s+1pLinearAX3,AX2Bsp21s+2pTrigonalplanarAX4,AX3B,AX2B2sp31s+3pTetrahedralAX5,AX4B,AX3B2,AX2B3sp3d1s+3p+1dTrigonalbipyramidalAX6,AX5B,AX4B2sp3d21s+3p+2dOctahedralACentralatomXAtomsbondedtoABNonbondingelectronpairsonA

(d)

Expert Solution
Check Mark

Explanation of Solution

In the marked carbon atom, one s and two p orbital hybridize forming three sp2 orbitals. Atomic orbitals are used to form each σ and π bond for the highlighted carbon atom can be given as,

Organic Chemistry, Chapter 5, Problem 5.10P , additional homework tip  5

(e)

Interpretation Introduction

Interpretation:

Atomic orbitals which are used to form each σ and π bond has to be identified for the highlighted carbon atom of the given compound.

Concept Introduction:

Hybridization is the mixing of valence atomic orbitals to get equivalent hybridized orbitals that having similar characteristics and energy.

Sigma (σ) bonds are the bonds in which shared hybrid orbital’s electron density are concentrated along the internuclear axis.

Pi (π) bonds are the bonds in which shared unhybridized orbital’s (p, d, etc) electron density are concentrated in above and below of the plane of the molecule.

  TypeofBondNo.ofσbondsNo.ofπbondsSingle10Double11Triple12

Geometry of different types of molecule with respect to the hybridizations are mentioned are mentioned below,

TypeofmoleculeHybridaizationAtomicorbitalsusedforhybridaizationGeometryAX2sp1s+1pLinearAX3,AX2Bsp21s+2pTrigonalplanarAX4,AX3B,AX2B2sp31s+3pTetrahedralAX5,AX4B,AX3B2,AX2B3sp3d1s+3p+1dTrigonalbipyramidalAX6,AX5B,AX4B2sp3d21s+3p+2dOctahedralACentralatomXAtomsbondedtoABNonbondingelectronpairsonA

(e)

Expert Solution
Check Mark

Explanation of Solution

In the marked carbon atom, one s and one p orbital hybridize forming two sp2 orbitals. Atomic orbitals are used to form each σ and π bond for the highlighted carbon atom can be given as,

Organic Chemistry, Chapter 5, Problem 5.10P , additional homework tip  6

In the marked carbon atom, one s and two p orbital hybridize forming three sp2 orbitals. Atomic orbitals are used to form each σ and π bond for the highlighted carbon atom can be given as,

Organic Chemistry, Chapter 5, Problem 5.10P , additional homework tip  7

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
81. a. Propose a mechanism for the following reaction: OH CH2=CHCHC=N b. What is the product of the following reaction? HO H₂O N=CCH2CH2CH OH HO CH3CCH=CH2 H₂O C=N 82. Unlike a phosphonium ylide that reacts with an aldehyde or a ketone to form an alkene a sulfonium ulia
For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. ? NH2 MgBr Will the first product that forms in this reaction create a new CC bond? ○ Yes ○ No MgBr ? Will the first product that forms in this reaction create a new CC bond? O Yes O No Click and drag to start drawing a structure. :☐ G x c olo Ar HE
Predicting As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C - C bond as its major product: H₂N O H 1. ? 2. H3O+ If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. 0 If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. فا Explanation Check Click and drag to start drawing a structure.
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax