An airplane of mass 1.50 × 104 kg is moving at 60.0 m/s. The pilot then increases the engine’s thrust to 7.50 × 104 N. The resistive force exerted by air on the airplane has a magnitude of 4.00 × 104 N. (a) Is the work done by the engine on the airplane equal to the change in the airplane’s kinetic energy after it travels through some distance through the air? Is mechanical energy conserved? Explain. (b) Find the speed of the airplane after it has traveled 5.00 × 102 m. Assume the airplane is in level flight throughout the motion.
An airplane of mass 1.50 × 104 kg is moving at 60.0 m/s. The pilot then increases the engine’s thrust to 7.50 × 104 N. The resistive force exerted by air on the airplane has a magnitude of 4.00 × 104 N. (a) Is the work done by the engine on the airplane equal to the change in the airplane’s kinetic energy after it travels through some distance through the air? Is mechanical energy conserved? Explain. (b) Find the speed of the airplane after it has traveled 5.00 × 102 m. Assume the airplane is in level flight throughout the motion.
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter9: Energy In Nonisolated Systems
Section: Chapter Questions
Problem 75PQ
Related questions
Question
An airplane of mass 1.50 × 104 kg is moving at 60.0 m/s. The pilot then increases the engine’s thrust to 7.50 × 104 N. The resistive force exerted by air on the airplane has a magnitude of 4.00 × 104 N. (a) Is the work done by the engine on the airplane equal to the change in the airplane’s kinetic energy after it travels through some distance through the air? Is mechanical energy conserved? Explain. (b) Find the speed of the airplane after it has traveled 5.00 × 102 m. Assume the airplane is in level flight throughout the motion.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning