Concept explainers
Determine the real root of
(a) Graphically.
(b) Using bisection to determine the root to
(c) Perform the same computation as in (b) but use the false-position method and
(a)

The real roots of the equation
Answer to Problem 3P
Solution:
The approximate real root of the equation is 0.6.
Explanation of Solution
Given Information:
The equation
Calculation:
The graph of the function can be plotted using MATLAB.
Code:
Output:
This gives the following plot:
The roots of an equation can be represented graphically by the x-coordinate of the point where the graph cuts the x-axis. From the plot, the only zeros of the equation can be approximated as 0.6.
(b)
To calculate: The root of the equation
Solution:
The root of the equation can be approximated as 0.59375.
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the bisection method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 11.1%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 5.26%.
As
(c)
To calculate: The root of the equation
Solution:
The root of the equation can be approximated as 0.57956.
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the false-position method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 1.29%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 0.17%.
As
(b)

To calculate: The root of the equation
Answer to Problem 3P
Solution:
The root of the equation can be approximated as 0.59375.
Explanation of Solution
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the bisection method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 11.1%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 5.26%.
As
(c)
To calculate: The root of the equation
Solution:
The root of the equation can be approximated as 0.57956.
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the false-position method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 1.29%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 0.17%.
As
(c)

To calculate: The root of the equation
Answer to Problem 3P
Solution:
The root of the equation can be approximated as 0.57956.
Explanation of Solution
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the false-position method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 1.29%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 0.17%.
As
Want to see more full solutions like this?
Chapter 5 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
Pathways To Math Literacy (looseleaf)
Probability And Statistical Inference (10th Edition)
APPLIED STAT.IN BUS.+ECONOMICS
Elementary Statistics: A Step By Step Approach
- 1. Evaluate the following improper integrals: (a) fe-rt dt; (b) fert dt; (c) fi da dxarrow_forward8. Given the rate of net investment I(t) = 9t¹/2, find the level of capital formation in (i) 16 years and (ii) between the 4th and the 8th years.arrow_forward9. If the marginal revenue function of a firm in the production of output is MR = 40 - 10q² where q is the level of output, and total revenue is 120 at 3 units of output, find the total revenue function. [Hints: TR = √ MRdq]arrow_forward
- 6. Solve the following first-order linear differential equations; if an initial condition is given, definitize the arbitrary constant: (a) 2 + 12y + 2et = 0, y(0) = /; (b) dy+y=tarrow_forward4. Let A = {a, b, c, d, e, f}, B = {e, f, g, h} and C = {a, e, h,i}. Let U = {a, b, c, d, e, f, g, h, i, j, k}. • Draw a Venn Diagram to describe the relationships between these sets Find (AB) NC • Find (AC) UB Find AUBUC • Find (BC) N (A - C)arrow_forward7. A consumer lives on an island where she produces two goods x and y according to the production possibility frontier x² + y² < 200 and she consumes all the goods. Her utility function is U(x, y) = x y³. She faces an environmental constraint on her total output of both goods. The environmental constraint is given by x + y ≤20. • (a) Write down the consumer's optimization problem. (b) Write out the Kuhn-Tucker first order conditions. (c) Find the consumer's optimal consumption bundle (x*, y*).arrow_forward
- 3. Answer the following questions: (a) Given the marginal propensity to import M'(Y) = 0.1 and the information that M = 20 when Y = 0, find the import function M(Y). (b) Given a continuous income stream at the constant rate of $1,000 per year, what will be the present value II if the income stream terminates after exactly 3 years and the discount rate is 0.04? (c) What is the present value of a perpetual cash flow of $2,460 per year, discounted at r = 8%?arrow_forward5. Let A and B be arbitrary sets. Prove AnB = AUB.arrow_forward2. Answer the following questions: (a) Given the marginal-revenue function R'(Q) = 28Q - €0.3Q, find the total-revenue function R(Q). What initial condition can you introduce to definitize the constant of integration? = (b) Given the marginal propensity to consume C'(Y) 0.80.1Y-1/2 and the information that C = Y when Y = 100, find the consumption function C(Y).arrow_forward
- 7. Let X, A, and B be arbitrary sets such that ACX and BC X. Prove AUB CX.arrow_forward1. Write out the following sets as a list of elements. If necessary you may use ... in your description. {x EZ: |x|< 10 A x < 0} {x ЄN: x ≤ 20 A x = 2y for some y = N} {n EN: 3 | n^ 1 < n < 20} {y Є Z: y² <0}arrow_forward3. For each statement below, write an equivalent statement using the justification given. = y Є A or yЄ B by the definition of union = y Є A or y Є B by the definition of set complement = x = C and x & D by DeMorgan's Law =Vx (x EnFxЄEUF) by definition of subset. = (X CYUZ)A (YUZ CX) by definition of set equalityarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning




