
Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 33AC
The difference between an echo and a reverberation is
a. an echo is a reflected sound; reverberation is not.
b. the time interval between the original sound and the reflected sound.
c. the amplitude of an echo is much greater.
d. reverberation comes from acoustical speakers; echoes come from cliffs and walls.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values.
Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all steps
An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave.
What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction?
Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all steps
Another worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk).
Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?
Chapter 5 Solutions
Physical Science
Ch. 5 - Prob. 1ACCh. 5 - 2. The number of vibrations that occur in 1 s is...Ch. 5 - 3. Frequency is measured in units of
a. time.
b....Ch. 5 - 4. The maximum displacement from rest to the crest...Ch. 5 - Prob. 5ACCh. 5 - 6. Your brain interprets a frequency as a sound...Ch. 5 - Prob. 7ACCh. 5 - 8. Generally, sounds travel faster in
a....Ch. 5 - 9. Sounds travel faster in
a. warmer air.
b....Ch. 5 - Prob. 10AC
Ch. 5 - Prob. 11ACCh. 5 - Prob. 12ACCh. 5 - Prob. 13ACCh. 5 - Prob. 14ACCh. 5 - Prob. 15ACCh. 5 - Prob. 16ACCh. 5 - Prob. 17ACCh. 5 - Prob. 18ACCh. 5 - 19. A resonant condition occurs when
a. an...Ch. 5 - Prob. 20ACCh. 5 - 21. The fundamental frequency on a vibrating...Ch. 5 - Prob. 22ACCh. 5 - Prob. 23ACCh. 5 - Prob. 24ACCh. 5 - Prob. 25ACCh. 5 - 26. A longitudinal mechanical wave causes...Ch. 5 - 27. A transverse mechanical wave causes particles...Ch. 5 - 28. Transverse mechanical waves will move only...Ch. 5 - 29. Longitudinal mechanical waves will move only...Ch. 5 - 30. A pulse of jammed-together molecules that...Ch. 5 - Prob. 31ACCh. 5 - Prob. 32ACCh. 5 - 33. The difference between an echo and a...Ch. 5 - Prob. 34ACCh. 5 - Prob. 35ACCh. 5 - 36. An observer on the ground will hear a sonic...Ch. 5 - Prob. 37ACCh. 5 - Prob. 38ACCh. 5 - Prob. 39ACCh. 5 - Prob. 40ACCh. 5 - Prob. 41ACCh. 5 - Prob. 42ACCh. 5 - Prob. 43ACCh. 5 - 44. What happens if the source of a sound is...Ch. 5 - Prob. 45ACCh. 5 - 1. What is a wave?
Ch. 5 - 2. Is it possible for a transverse wave to move...Ch. 5 - 3. A piano tuner hears three beats per second when...Ch. 5 - 4. Why do astronauts on the Moon have to...Ch. 5 - 5. What is resonance?
Ch. 5 - 6. Explain why sounds travel faster in warm air...Ch. 5 - 7. Do all frequencies of sound travel with the...Ch. 5 - 8. What eventually happens to a sound wave...Ch. 5 - 9. What gives a musical note its characteristic...Ch. 5 - 10. Does a supersonic aircraft make a sonic boom...Ch. 5 - 11. What is an echo?
Ch. 5 - 12. Why are fundamental frequencies and overtones...Ch. 5 - 1. How would distant music sound if the speed of...Ch. 5 - 2. What are the significant similarities and...Ch. 5 - 3. Sometimes it is easier to hear someone speaking...Ch. 5 - 4. Describe how you can use beats to tune a...Ch. 5 - 6. Are vibrations the source of all sounds?...Ch. 5 - 7. How can sound waves be waves of pressure...Ch. 5 - 8. Why is it not a good idea for a large band to...Ch. 5 - 1. A water wave has a frequency of 6 Hz and a...Ch. 5 - 2. The lower frequency limit for human hearing is...Ch. 5 - 3. A 520 Hz tone is sounded at the same time as a...Ch. 5 - Prob. 4PEBCh. 5 - 5. How much time will elapse between seeing and...Ch. 5 - 6. An echo bounces from a building exactly 1.00 s...Ch. 5 - 7. A submarine sends a sonar signal, which returns...Ch. 5 - 8. A student under water clicks two rocks together...Ch. 5 - 9. You see condensed steam expelled from a ship’s...Ch. 5 - 10. Compare the distance traveled in 6.00 s as a...Ch. 5 - 11. A tuning fork vibrates 440.0 times a second,...Ch. 5 - 12. The distance between the center of a...Ch. 5 - Prob. 13PEBCh. 5 - 14. Sound from the siren of an emergency vehicle...Ch. 5 - 15. The following sound waves have what...Ch. 5 - 16. How much time is required for a sound to...Ch. 5 - 17. A ship at sea sounds a whistle blast, and an...Ch. 5 - 18. How many seconds will elapse between seeing...Ch. 5 - 19. A 600.0 Hz sound has a velocity of 1,087.0...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forwardAn ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forward
- A 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forwardA worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forward
- Can someone help mearrow_forward3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forwardA particle in a box between x=0 and x=6 has the wavefunction Psi(x)=A sin(2πx). How muchenergy is required for the electron to make a transition to Psi(x)= A’ sin(7π x/3). Draw anapproximate graph for the wavefunction. Find A and A'arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY