
Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 15AC
To determine
The result of the two sound waves with equal amplitudes and slightly different frequencies, from the following options.
An echo.
The Doppler effect.
Alternation of loudness of sound known as beats.
Two separate sounds.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You are working during the summer at a company that builds theme parks. The company is designing an electromagnetic propulsion system for a new roller coaster. A model of a substructure of the device appears in the figure below.
Two parallel, horizontal rails extend from left to right, with one rail behind the other. A cylindrical rod rests on top of and perpendicular to the rails at their left ends. The distance between the rails is d and the length of the rails is L. The magnetic field vector B points vertically down, perpendicular to the rails. Within the rod, the current I flows out of the page, from the rail in the back toward the rail in the front.
The rod is of length d = 1.00 m and mass m = 0.700 kg. The rod carries a current I = 100 A in the direction shown and rolls along the rails of length L = 20.0 m without slipping. The entire system of rod and rails is immersed in a uniform downward-directed magnetic field with magnitude B = 2.30 T. The electromagnetic force on the rod…
Based on the graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?
Can you help me to solve this two questions can you teach me step by step how to solve it.
Chapter 5 Solutions
Physical Science
Ch. 5 - Prob. 1ACCh. 5 - 2. The number of vibrations that occur in 1 s is...Ch. 5 - 3. Frequency is measured in units of
a. time.
b....Ch. 5 - 4. The maximum displacement from rest to the crest...Ch. 5 - Prob. 5ACCh. 5 - 6. Your brain interprets a frequency as a sound...Ch. 5 - Prob. 7ACCh. 5 - 8. Generally, sounds travel faster in
a....Ch. 5 - 9. Sounds travel faster in
a. warmer air.
b....Ch. 5 - Prob. 10AC
Ch. 5 - Prob. 11ACCh. 5 - Prob. 12ACCh. 5 - Prob. 13ACCh. 5 - Prob. 14ACCh. 5 - Prob. 15ACCh. 5 - Prob. 16ACCh. 5 - Prob. 17ACCh. 5 - Prob. 18ACCh. 5 - 19. A resonant condition occurs when
a. an...Ch. 5 - Prob. 20ACCh. 5 - 21. The fundamental frequency on a vibrating...Ch. 5 - Prob. 22ACCh. 5 - Prob. 23ACCh. 5 - Prob. 24ACCh. 5 - Prob. 25ACCh. 5 - 26. A longitudinal mechanical wave causes...Ch. 5 - 27. A transverse mechanical wave causes particles...Ch. 5 - 28. Transverse mechanical waves will move only...Ch. 5 - 29. Longitudinal mechanical waves will move only...Ch. 5 - 30. A pulse of jammed-together molecules that...Ch. 5 - Prob. 31ACCh. 5 - Prob. 32ACCh. 5 - 33. The difference between an echo and a...Ch. 5 - Prob. 34ACCh. 5 - Prob. 35ACCh. 5 - 36. An observer on the ground will hear a sonic...Ch. 5 - Prob. 37ACCh. 5 - Prob. 38ACCh. 5 - Prob. 39ACCh. 5 - Prob. 40ACCh. 5 - Prob. 41ACCh. 5 - Prob. 42ACCh. 5 - Prob. 43ACCh. 5 - 44. What happens if the source of a sound is...Ch. 5 - Prob. 45ACCh. 5 - 1. What is a wave?
Ch. 5 - 2. Is it possible for a transverse wave to move...Ch. 5 - 3. A piano tuner hears three beats per second when...Ch. 5 - 4. Why do astronauts on the Moon have to...Ch. 5 - 5. What is resonance?
Ch. 5 - 6. Explain why sounds travel faster in warm air...Ch. 5 - 7. Do all frequencies of sound travel with the...Ch. 5 - 8. What eventually happens to a sound wave...Ch. 5 - 9. What gives a musical note its characteristic...Ch. 5 - 10. Does a supersonic aircraft make a sonic boom...Ch. 5 - 11. What is an echo?
Ch. 5 - 12. Why are fundamental frequencies and overtones...Ch. 5 - 1. How would distant music sound if the speed of...Ch. 5 - 2. What are the significant similarities and...Ch. 5 - 3. Sometimes it is easier to hear someone speaking...Ch. 5 - 4. Describe how you can use beats to tune a...Ch. 5 - 6. Are vibrations the source of all sounds?...Ch. 5 - 7. How can sound waves be waves of pressure...Ch. 5 - 8. Why is it not a good idea for a large band to...Ch. 5 - 1. A water wave has a frequency of 6 Hz and a...Ch. 5 - 2. The lower frequency limit for human hearing is...Ch. 5 - 3. A 520 Hz tone is sounded at the same time as a...Ch. 5 - Prob. 4PEBCh. 5 - 5. How much time will elapse between seeing and...Ch. 5 - 6. An echo bounces from a building exactly 1.00 s...Ch. 5 - 7. A submarine sends a sonar signal, which returns...Ch. 5 - 8. A student under water clicks two rocks together...Ch. 5 - 9. You see condensed steam expelled from a ship’s...Ch. 5 - 10. Compare the distance traveled in 6.00 s as a...Ch. 5 - 11. A tuning fork vibrates 440.0 times a second,...Ch. 5 - 12. The distance between the center of a...Ch. 5 - Prob. 13PEBCh. 5 - 14. Sound from the siren of an emergency vehicle...Ch. 5 - 15. The following sound waves have what...Ch. 5 - 16. How much time is required for a sound to...Ch. 5 - 17. A ship at sea sounds a whistle blast, and an...Ch. 5 - 18. How many seconds will elapse between seeing...Ch. 5 - 19. A 600.0 Hz sound has a velocity of 1,087.0...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Given: ruler 11.56 g, small washer 1.85 g each, large washer 24.30g each Use the data in Data Tables 4 and 5 to experimentally determine the mass of your ruler. Use one of your 2 trials with 1 small washer at 0 cm, one of your 2 trials with 2 small washers at 0 cm, and one of your 2 trials with 3 small washers at 0 cm to find three experimental values for the mass of the ruler. How do you experimentalls determine the mass?arrow_forwardCompare the 3 experimental masses of your ruler to the measured mass of your ruler (Data Table 1) by calculating the percent error for each experimental value. Which trial provided the best data for determining the mass of the ruler? Please help, I am not sure how to calculate this. Thanks!arrow_forwardPlease help, everytime I try to input the data only one point shows on the graph. Please graph unsing centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line. Thank you!arrow_forward
- Please help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardBased on your graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?arrow_forwardDid your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data. My data shows that they are not equal to each other. So what does this mean? Thanks!arrow_forward
- Please help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardExplain how your experiment met the condition for equilibrium in Equation 4: ΣFvertical = ΣFy = 0.arrow_forwardCan i get answer and solution for this question and can you teach me What we use to get the answer.arrow_forward
- Can i get answer and solution and can you teach me how to get it.arrow_forwardConsider a image that is located 30 cm in front of a lens. It forms an upright image 7.5 cm from the lens. Theillumination is so bright that that a faint inverted image, due to reflection off the front of the lens, is observedat 6.0 cm on the incident side of the lens. The lens is then turned around. Then it is observed that the faint,inverted image is now 10 cm on the incident side of the lens.What is the index of refraction of the lens?arrow_forward2. In class, we discussed several different flow scenarios for which we can make enough assumptions to simplify the Navier-Stokes equations enough to solve them and obtain an exact solution. Consulting the cylindrical form of the Navier-Stokes equations copied below, please answer the following questions. др a 1 a + +0x- + +O₂ = Pgr + μl 18²v, 2 ave ²v₁] az2 + at or r de r Əz dr ar Vodvz др [18 + + +Or + +Vz = Pgz +fl at ar r 20 ôz ôz dr ave дов V,Ve ave +Or + + = pge at dr r 80 Əz + az2 a.) In class, we discussed how the Navier-Stokes equations are an embodiment of Newton's 2nd law, F = ma (where bolded terms are vectors). Name the 3 forces that we are considering in our analysis of fluid flow for this class. др a 10 1 ve 2 av 2200] + +μ or 42 30 b.) If we make the assumption that flow is "fully developed" in the z direction, which term(s) would go to zero? Write the term below, describe what the term means in simple language (i.e. do not simply state "it is the derivative of a with…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning