Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 29Q
To determine
If red light or blue light emit more photon per second.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the wavelength of a photon having an energy of 5.89 x 10^11 J of energy. E = hc/λ
You must show a correct numerical setup and your answer must include the correct mathematical unit.
Photons of a certain infrared light have an energy of 1.21X 10^-19 J. What is the frequency of this IR light? Use ? = c/f to calculate its wavelength in nanometers.
U
U
U
U
E
Which diagram(s) show emission of Ultraviolet light?
F
B
D
A
A
D
e
B
e
E
C
F
e-
Chapter 5 Solutions
Universe: Stars And Galaxies
Ch. 5 - Prob. 1QCh. 5 - Prob. 2QCh. 5 - Prob. 3QCh. 5 - Prob. 4QCh. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - Prob. 8QCh. 5 - Prob. 9QCh. 5 - Prob. 10Q
Ch. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Prob. 13QCh. 5 - Prob. 14QCh. 5 - Prob. 15QCh. 5 - Prob. 16QCh. 5 - Prob. 17QCh. 5 - Prob. 18QCh. 5 - Prob. 19QCh. 5 - Prob. 20QCh. 5 - Prob. 21QCh. 5 - Prob. 22QCh. 5 - Prob. 23QCh. 5 - Prob. 24QCh. 5 - Prob. 25QCh. 5 - Prob. 26QCh. 5 - Prob. 27QCh. 5 - Prob. 28QCh. 5 - Prob. 29QCh. 5 - Prob. 30QCh. 5 - Prob. 31QCh. 5 - Prob. 32QCh. 5 - Prob. 33QCh. 5 - Prob. 34QCh. 5 - Prob. 35QCh. 5 - Prob. 36QCh. 5 - Prob. 37QCh. 5 - Prob. 38QCh. 5 - Prob. 39QCh. 5 - Prob. 40QCh. 5 - Prob. 41QCh. 5 - Prob. 42QCh. 5 - Prob. 43QCh. 5 - Prob. 44QCh. 5 - Prob. 45QCh. 5 - Prob. 46QCh. 5 - Prob. 47QCh. 5 - Prob. 48QCh. 5 - Prob. 49QCh. 5 - Prob. 50QCh. 5 - Prob. 51Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose YOUR body temperature averages 98.6 F. 1. How much radiant energy in Wm^-2 is emitted from YOUR body? 2. What is the total radiant energy in W that is emitted from YOUR body? 3. At what wavelength does YOUR body emit the largest amount of radiant energy?arrow_forwardPlease answer the question in the imagearrow_forwarda) To which object corresponds this spectrum to? b) What is the source of radiation for each of the two humps? c) Why does the hump on the right hand side peak at higher wavelength than the hump on the left? [Specifically, what does this tell you about the temperature for each object that the light originates from?]arrow_forward
- When astronomers look at the spectrum of the Sun, they noticed that the light from one edge is slightly blue-shifted, while light from the opposite age is slightly red-shifted. What does this tell you about the Sun?arrow_forwardIf you see a red-hot star, you can be certain that its peak intensity is in the infrared region. Why is this?arrow_forwardA blue-hot star is about twice as hot as a red-hot star. But the temperatures of the gases in advertising signs are about the same, whether they emit red or blue light. What is your explanation?arrow_forward
- Please answer the question about light and color: Which line is easier to see under red light, the red or the black line? Why? What makes red ink appear red? When red ink is illumined by blue light, is most of the light absorbed or reflected? When illumined with red light, why is red ink on white paper more difficult to see than black ink?arrow_forwardIt took scientists a long time to reconcile the dual nature of light, which led to the idea of the duality of matter. Will it be possible to see the dual nature of light at the same time? Briefly explain your answer.arrow_forwardIn the graph below, the yellow region shows the AM 1.5 solar spectrum. The area indicated by the blue area represents the AM 1.0 spectrum. The boundaries of the AM 1.0 spectrum; When λ = between 250nm and 1000nm Pλ = 1x109Wm^(-2) m^(-1) When λ = between 1000nm and 2000nm Pλ = 0.25x109W m^(-2) m^(-1) In that case; a-) Find the radiation intensity (I) and photon flux () for AM 1.0. b-) If the radiation intensity in the option a comes to the silicon solar cell with a band gap of 1.12eV, how much will the photo-current be produced?arrow_forward
- Answer these questions for celestial bodies at each of the following temperatures and then draw a conclusion about the relationship between temperature and wavelength of maximum intensity. What is the wavelength of maximum intensity? In which part of the electromagnetic spectrum (gamma-ray, X-ray, UV, visible light, IR, microwave, or radio) does this peak wavelength lie? Give an example of an object that might have this temperature. a. 50 K b. 500 K c. 5000 K d. 50,000 Karrow_forwardContinuing the thinking in Exercise 29.27 and Exercise 29.28, calculate the energy in a cubic meter of space, multiply the energy per photon calculated in Exercise 29.26 by the number of photons per cubic meter given above.arrow_forwardExplain how we use spectral absorption and emission lines to determine the composition of a gas.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax