
(a)
Interpretation:
To write the name of the polyatomic ions CO3 2-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species CO3 2 - is named as carbonate.
Explanation of Solution
The polyatomic species CO3 2 - is named as Carbonate ion. The name carbon comes from element C and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(b)
Interpretation:
To write the name of the polyatomic ions MnO4 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species MnO4 - is named as permanganate ion.
Explanation of Solution
The polyatomic speciesMnO4 - is named aspermanganate ion. The name Magnan comes from element Mnand suffix ate is used for negative charge. It is an anionic polyatomic ions.
(c)
Interpretation:
To write the name of the polyatomic ions NO3 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species NO3 - is named as Nitrate ion.
Explanation of Solution
The polyatomic species NO3 - is named as Nitrate ion. The name Nitr comes from element N and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(d)
Interpretation:
To write the name of the polyatomic ions HSO4 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species CO3 2 - is named as carbonate.
Explanation of Solution
The polyatomic species HSO4 - is named as hydrogen sulfate. The name Hydrogensulf comes from element HSO4 and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(e)
Interpretation:
To write the name of the polyatomic ions C2 H3 O2 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species C2 H3 O2 - is named as Acetate ion.
Explanation of Solution
The polyatomic species C2 H3 O2 - is named as acetate ion. The name acetate comes from C2 H3 O2 -and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(f)
Interpretation:
To write the name of the polyatomic ions CrO4 2-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species CrO4 2 - is named as Chromate ion.
Explanation of Solution
The polyatomic species CrO4 2 - is named as chromate ion. The name chromcomes from element Cr and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(g)
Interpretation:
To write the name of the polyatomic ions OH-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species OH- is named as hydroxide ion.
Explanation of Solution
The polyatomic species OH- is named as Hydroxide ion. The name hydrox comes from element O and H and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(h)
Interpretation:
To write the name of the polyatomic ions ClO2 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species ClO2 - is named as chlorine dioxide.
Explanation of Solution
The polyatomic species ClO2 - is named as chlorine dioxide. The name Cl comes from element Cl and Oxide from element O and also used di for 2 Oxygen, suffix ate is used for negative charge. It is an anionic polyatomic ions.
(i)
Interpretation:
To write the name of the polyatomic ions HCO3 -.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species HCO3 - is named as bicarbonate ion.
Explanation of Solution
The polyatomic species HCO3 - is named as bicarbonate ion. The name bicarbon comes from HCO3 - and suffix ate is used for negative charge. It is an anionic polyatomic ions.
(j)
Interpretation:
To write the name of the polyatomic ions HPO4 2-.
Concept Introduction:
The polyatomic ions are formed by the combinations of nonmetals element to each other. They are covalently bonded to each other and having the positive and negative charge on it. The negative charge species in named as anionic species and positive charge species is named as cationic species.
The naming of polyatomic anions can be done by using the suffix ate or ite or ide. The element written firstly is named as such and then for negative element we use suffix.

Answer to Problem 28CR
The polyatomic species HPO4 2 - is named as bicarbonate ion.
Explanation of Solution
The polyatomic species HPO4 2 - is named as Hydrogen phosphate ion. The name hydrogen phosphate comes from HPO4 2 - and suffix ate is used for negative charge. It is an anionic polyatomic ions.
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning





