
Concept explainers
(a)
Interpretation:
To determine the number of proton and electron of the ionic species Mg2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Mg2 + species is 12 and 10 respectively.
Explanation of Solution
(b)
Interpretation:
To determine the number of proton and electron of the ionic species Fe2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Fe2 + species is 26 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-2 = 24.
(c)
Interpretation:
To determine the number of proton and electron of the ionic species Fe3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Fe3 + species is 26 and 23 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-3 = 23.
(d)
Interpretation:
To determine the number of proton and electron of the ionic species F-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of F- species is 9 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Mg2 + is 9 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 9+1 = 10.
(e)
Interpretation:
To determine the number of proton and electron of the ionic species Ni2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Ni2 + species is 28 and 26 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Ni2 + is 28 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 28-2 = 26.
(f)
Interpretation:
To determine the number of proton and electron of the ionic species Zn2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Zn2 + species is 30 and 28 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Zn2 + is 30 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 30-2 = 28.
(g)
Interpretation:
To determine the number of proton and electron of the ionic species Co3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Co3 + species is 27 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Co3 + is 27 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 27-3 = 24.
(h)
Interpretation:
To determine the number of proton and electron of the ionic species N3-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of N3 - species is 7 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of N3 - is 7 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 7+3 = 10.
(i)
Interpretation:
To determine the number of proton and electron of the ionic species S2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of S2 - species is 16 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of S2 - is 16 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 16+2 = 18.
(j)
Interpretation:
To determine the number of proton and electron of the ionic species Rb+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Rb+ species is 37and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Rb+ is 37 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 37-1=36.
(k)
Interpretation:
To determine the number of proton and electron of the ionic species Se2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of Se2 - species is 34 and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Se2 - is 34 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 34+2 = 36.
(l)
Interpretation:
To determine the number of proton and electron of the ionic species K+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.

Answer to Problem 24CR
The number of proton and electron of K+ species is 19 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of K+ is 19 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 19-1 = 18.
Want to see more full solutions like this?
Chapter 5 Solutions
Introductory Chemistry: A Foundation
- Identify and provide a concise explanation of the concept of signal-to-noise ratio (SNR) in the context of chemical analysis. Provide specific examples.arrow_forwardIdentify and provide a concise explanation of a specific analytical instrument capable of detecting and quantifying trace compounds in food samples. Emphasise the instrumental capabilities relevant to trace compound analysis in the nominated food. Include the specific application name (eg: identification and quantification of mercury in salmon), outline a brief description of sample preparation procedures, and provide a summary of the obtained results from the analytical process.arrow_forwardIdentify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward
- 5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forwardState the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardState the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forward
- Provide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardGiven a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forward
- The molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forwardIn GC, what order will the following molecules elute from the column? CH3OCH3, CH3CH2OH, C3H8, C4H10arrow_forwardBeer’s Law is A = εbc, where A is absorbance, ε is the molar absorptivity (which is specific to the compound and wavelength in the measurement), and c is concentration. The absorbance of a 2.31 × 10-5 M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





