WebAssign for Seeds' The Solar System
10th Edition
ISBN: 9780357724729
Author: Seeds
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 21RQ
To determine
The gravitational force when a person is sitting next to a person who is having double mass moves to a distance twice that of the original distance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are seated in your physics class next to another student 0.60 m away. Estimate the magnitude of the gravitational force between you. Assume that you each have a mass of 65 kg.
You are seated 1.5 m away from your best friend. One of you has a mass of 60 kg and the other has a mass of 70 kg.
a) What is the magnitude of the gravitational force that each one of you exerts on the other?
B) What is the direction of this force?
Miniature black holes. Left over from the big-bang beginning of the universe, tiny black holes might still wander through the universe. If one with a mass of 1*1011 kg (and a radius of only 1*10-16 m) reached Earth, at what distance from your head would its gravitational pull on you match that of Earth’s?
Chapter 5 Solutions
WebAssign for Seeds' The Solar System
Ch. 5 - Prob. 1RQCh. 5 - Today, what do we call the Aristotelean violent...Ch. 5 - Which of Keplers or Newtons laws best describes...Ch. 5 - Prob. 4RQCh. 5 - Prob. 5RQCh. 5 - If you drop a feather and a steel hammer at the...Ch. 5 - What is the difference between mass and weight?
Ch. 5 - Prob. 8RQCh. 5 - An astronaut working in space near the...Ch. 5 - Prob. 10RQ
Ch. 5 - A car is on a circular off ramp of an interstate...Ch. 5 - Prob. 12RQCh. 5 - Prob. 13RQCh. 5 - An astronaut is in space with a baseball and a...Ch. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - Why did Newton conclude that some force had to...Ch. 5 - Why did Newton conclude that gravity has to be...Ch. 5 - Prob. 19RQCh. 5 - Prob. 20RQCh. 5 - Prob. 21RQCh. 5 - You are sitting next to a person who has twice as...Ch. 5 - Prob. 23RQCh. 5 - Why cant a spacecraft go beyond Earths gravity?Ch. 5 - Prob. 25RQCh. 5 - Balance a pencil lengthwise on the side of your...Ch. 5 - Prob. 27RQCh. 5 - Why can’t you leave Earth’s gravitational field...Ch. 5 - Prob. 29RQCh. 5 -
How do planets orbiting the Sun and skaters doing...Ch. 5 - Prob. 31RQCh. 5 - If you hold this textbook out at shoulder height...Ch. 5 - Today at the beach you see the highest of all high...Ch. 5 - Why is the period of an open orbit undefined?
Ch. 5 - In what conditions do Newtons laws of motion and...Ch. 5 - Prob. 36RQCh. 5 - Prob. 37RQCh. 5 - Prob. 38RQCh. 5 - How is gravity related to acceleration? Are all...Ch. 5 - Prob. 40RQCh. 5 - Prob. 41RQCh. 5 - Prob. 42RQCh. 5 - An astronomy textbook is to be dropped from a tall...Ch. 5 - Compared to the strength of Earth’s gravity at its...Ch. 5 - Compare the force of gravity on a 1 kg mass on the...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - If a small lead ball falls from a high tower on...Ch. 5 - What is the circular velocity of an Earth...Ch. 5 - What is the circular velocity of an Earth...Ch. 5 - Prob. 9PCh. 5 - Describe the shape of the orbit followed by the...Ch. 5 - Prob. 11PCh. 5 - What is the orbital period of a satellite orbiting...Ch. 5 - What would be the escape velocity at the surface...Ch. 5 - Prob. 14PCh. 5 - A moon of Jupiter takes 1.8 days to orbit at a...Ch. 5 - Prob. 1SPCh. 5 - Prob. 2SPCh. 5 - Prob. 1LLCh. 5 - Prob. 2LLCh. 5 - Why is it a little bit misleading to say that this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardA planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2r. The magnitude of the gravitational force exerted by the planet on Moon 2 is (a) four times as large (b) twice as large (c) the same (d) half as large (e) one-fourth as large as the gravitational force exerted by the planet on Moon 1.arrow_forwardThe gravitational force exerted on an astronaut on the Earths surface is 650 N directed downward. When she is in the space station in orbit around the Earth, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?arrow_forward
- Figure P7.45 shows a picture of American astronaut Clay Anderson experiencing weightlessness on board the International Space Station. a. Most people have the misconception that a person in a spacecraft is weightless because he or she is no longer affected by gravity. Show that this premise cannot be true by computing the gravitational field of the Earth at an altitude of 200 km the typical altitude of a spacecraft in orbit. Compare this result with the gravitational field on the surface of the Earth. b. Why would astronauts in orbit experience weightlessness even if they are experiencing a gravitational field (and therefore a gravitational force)?arrow_forward(a) Find the magnitude of the gravitational force between a planet with mass 7.50 1024 kg and its moon, with mass 2.70 1022 kg, if the average distance between their centers is 2.80 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the acceleration of the planet towards the moon?arrow_forwardA satellite of mass 16.7 kg in geosynchronous orbit at an altitude of 3.58 104 km above the Earths surface remains above the same spot on the Earth. Assume its orbit is circular. Find the magnitude of the gravitational force exerted by the Earth on the satellite. Hint: The answer is not 163 N.arrow_forward
- Estimate the gravitational force between two sumo wrestlers, with masses 220 kg and 240 kg, when they are embraced and their centers are 1.2 m apart.arrow_forwardFor many years, astronomer Percival Lowell searched for a Planet X that might explain some of the perturbations observed in the orbit of Uranus. These perturbations were later explained when the masses of the outer planets and planetoids, particularly Neptune, became better measured (Voyager 2). At the time, however, Lowell had proposed the existence of a Planet X that orbited the Sun with a mean distance of 43 AU. With what period would this Planet X orbit the Sun?arrow_forwardTwo black holes (the remains of exploded stars), separated by a distance of 10.0 AU (1 AU = 1.50 1011 m), attract one another with a gravitational force of 8.90 1025 N. The combined mass of the two black holes is 4.00 1030 kg. What is the mass of each black hole?arrow_forward
- The Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardWhen a star dies, much of its mass may collapse into a single point known as a black hole. The gravitational force of a black hole on surrounding astronomical objects can be very great. Astronomers estimate the strength of this force by observing the orbits of such objects around a black hole. What is the gravitational force exerted by a black hole on a 1-solar-mass star whose orbit has a 1.4 1010 m radius and a period of 5.6 days?arrow_forward(a) Find the magnitude of the gravity force between a planet with mass 5.98 1024 kg and its moon, with mass 7.36 1022 kg, if the average distance between them is 3.84 108 m. (b) What is the acceleration of the moon toward the planet? (c) What is the acceleration of the planet toward the moon? (See Section 7.5.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY