Essential Calculus: Early Transcendentals
Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112280
Author: James Stewart
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 5, Problem 1RCC

(a)

To determine

To find: The expression for a Riemann sum of a function f.

(a)

Expert Solution
Check Mark

Answer to Problem 1RCC

The expression for a Riemann sum of a function f is i=1nf(xi*)Δx.

Explanation of Solution

The Riemann sum of a function f is the method to find the total area underneath a curve.

The area under the curve dividedas n number of approximating rectangles. Hence the Riemann sum of a function f is the sum of the area of the all individual rectangles.

R=i=1nf(xi*)Δx

Here, xi* is a point in the i subinterval [xi1,xi] and Δx is the length of the sub intervals.

Thus, the expression for a Riemann sum of a function f is i=1nf(xi*)Δx.

b)

To determine

To define: The geometric interpretation of a Riemann sum with diagram.

b)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Consider the condition for the function f(x)0

The function f(x)0 represents that the function is in the first quadrant of the graph.

Sketch the curve f(x) in the first quadrant and then separate the area under the curve with n number approximating rectangles.

Show the curve as in Figure 1.

Essential Calculus: Early Transcendentals, Chapter 5, Problem 1RCC , additional homework tip  1

Refer to Figure 1

The function f(x) is positive. Hence the sum of areas of rectangles underneath the curve is the Riemann sum.

Thus, the geometric interpretation of a Riemann sum of f(x)0 is defined.

c)

To determine

To define: The geometric interpretation of a Riemann sum, if the function f(x) takes on both positive and negative values.

c)

Expert Solution
Check Mark

Explanation of Solution

Given information:

The function f(x) takes on both positive and negative values.

The function f(x) takes on both positive and negative values represents that the function is in the first and fourth quadrant of the graph.

Sketch the curve f(x) in the first and third quadrant and then divide the area under the curve and above the curve with n number approximating rectangles.

Show the curve as in Figure 2.

Essential Calculus: Early Transcendentals, Chapter 5, Problem 1RCC , additional homework tip  2

Refer figure 2,

The Riemann sum is the difference of areas of approximating rectangles above and below the x-axis

Therefore, the geometric interpretation of a Riemann sum is defined, if f(x) has both positive and negative values.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
its illustration
E There are 4 quarts in a gallon and 64 tablespoons in a quart. (a) Write a function I that converts x gallons to quarts. (b) Write a function C that converts x quarts to tablespoons. (c) Express a function F that converts x gallons to tablespoons. (d) Write a formula for F. (a) 1(x) = (Use integers or decimals for any numbers in the expression.) ew an example TYYNYN Get more help
X State the domain of f(x). (Enter your answer using interval notation.) 1 Submit Answer Suppose f is a function that takes a real number x and performs the following three steps in the order given: (1) add 7; (2) multiply by 2; (3) divide by 8. Find an expression for f(x). f(x) = State the domain of f(x). (Enter your answer using interval notation.) Q PAPASWATOTES ANSWEDS | CTIT F1 2 W F2 Suppose f is a function that takes a real number x and performs the following three steps in the order given: (1) subtract 14; (2) square root; (3) make the quantity the denominator of a fraction with numerator 3. Find an expression for f(x). f(x) = # 3 E 80 F3 $ 4 R a F4 % 5 9 F5 T 6 F6 Y & 7 change the answer. F7 ASSIQUIDI U Your last subm * 00 DII 8 F8 1 ( used for your score 9 F9 O F10 ges you submit or P X÷ 00 √ 0! F12 calcPad Functions Symbols Relations Sets Vectors Trig Greek

Chapter 5 Solutions

Essential Calculus: Early Transcendentals

Ch. 5.1 - Prob. 11ECh. 5.1 - Prob. 12ECh. 5.1 - The velocity graph of a braking car is shown. Use...Ch. 5.1 - Prob. 14ECh. 5.1 - Use Definition 2 to find an expression for the...Ch. 5.1 - Prob. 16ECh. 5.1 - Prob. 17ECh. 5.1 - Prob. 18ECh. 5.1 - Prob. 19ECh. 5.1 - Prob. 20ECh. 5.1 - (a) Let An be the area of a polygon with n equal...Ch. 5.2 - Evaluate the Riemann sum for f(x)=312x,2x14, with...Ch. 5.2 - Prob. 2ECh. 5.2 - If f(x)=ex2, 0 x 2, find the Riemann sum with n...Ch. 5.2 - Prob. 4ECh. 5.2 - Prob. 5ECh. 5.2 - Find the Riemann sum for f (x) = x + x2, 2x0, if...Ch. 5.2 - Prob. 7ECh. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - Prob. 10ECh. 5.2 - Prob. 11ECh. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - Express the limit as a definite integral on the...Ch. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - Prob. 18ECh. 5.2 - Prob. 19ECh. 5.2 - Use the form of the definition of the integral...Ch. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - Prob. 25ECh. 5.2 - 25–26 Express the integral as a limit of Riemann...Ch. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Prob. 31ECh. 5.2 - Prob. 32ECh. 5.2 - Evaluate the integral by interpreting it in terms...Ch. 5.2 - Evaluate the integral by interpreting it in terms...Ch. 5.2 - 31–36 Evaluate the integral by interpreting it in...Ch. 5.2 - 3136 Evaluate the integral by interpreting it in...Ch. 5.2 - Evaluate sin2xcos4xdx.Ch. 5.2 - Given that 013xx2+4dx=558, what is 103uu2+4du?Ch. 5.2 - Write as a single integral in the form abf(x)dx:...Ch. 5.2 - If 15f(x)dx=12 and 45f(x)dx=3.6, find 14f(x)dx.Ch. 5.2 - If 09f(x)dx=37 and 09g(x)dx=16, find...Ch. 5.2 - Find 05f(x)dx if f(x)={3forx3xforx3Ch. 5.2 - In Example 2 in Section 5.1 we showed that...Ch. 5.2 - If , F(x)=2xf(t)dt, where f is the function whose...Ch. 5.2 - Prob. 45ECh. 5.2 - Prob. 46ECh. 5.2 - Prob. 47ECh. 5.2 - Use Property 8 to estimate the value of the...Ch. 5.2 - Use Property 8 to estimate the value of the...Ch. 5.2 - 61. Use Property 8 to estimate the value of the...Ch. 5.2 - Use Property 8 to estimate the value of the...Ch. 5.2 - Use Property 8 to estimate the value of the...Ch. 5.2 - Express the limit as a definite integral....Ch. 5.3 - 32. Evaluate the integral. Ch. 5.3 - Evaluate the integral. 01coshtdtCh. 5.3 - Prob. 22ECh. 5.3 - Prob. 23ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Prob. 38ECh. 5.3 - Prob. 31ECh. 5.3 - Prob. 33ECh. 5.3 - Prob. 34ECh. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 69ECh. 5.3 - Prob. 32ECh. 5.3 - Prob. 70ECh. 5.3 - Prob. 45ECh. 5.3 - Find the general indefinite integral. (x3+x23)dxCh. 5.3 - Prob. 46ECh. 5.3 - Prob. 47ECh. 5.3 - Prob. 43ECh. 5.3 - Prob. 48ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.3 - Prob. 1ECh. 5.3 - Prob. 2ECh. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - Prob. 7ECh. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Prob. 10ECh. 5.3 - Prob. 11ECh. 5.3 - Evaluate the integral. 14yyy2dyCh. 5.3 - Prob. 13ECh. 5.3 - Prob. 14ECh. 5.3 - Prob. 15ECh. 5.3 - Prob. 17ECh. 5.3 - Prob. 18ECh. 5.3 - Prob. 20ECh. 5.3 - Prob. 21ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Prob. 49ECh. 5.3 - Prob. 50ECh. 5.3 - Prob. 51ECh. 5.3 - Prob. 52ECh. 5.3 - Prob. 53ECh. 5.3 - Prob. 54ECh. 5.3 - Prob. 55ECh. 5.3 - Prob. 56ECh. 5.3 - Prob. 57ECh. 5.3 - Prob. 58ECh. 5.3 - Prob. 59ECh. 5.3 - 5960 The velocity function (in meters per second)...Ch. 5.3 - Prob. 61ECh. 5.3 - Prob. 62ECh. 5.3 - Prob. 65ECh. 5.3 - Prob. 63ECh. 5.3 - Prob. 64ECh. 5.3 - Prob. 66ECh. 5.3 - Prob. 67ECh. 5.3 - Prob. 68ECh. 5.4 - Let g(x)=0xf(t)dt, where f is the function whose...Ch. 5.4 - Let g(x)=0xf(t)dt, where f is the function whose...Ch. 5.4 - Sketch the area represented by g(x). Then find...Ch. 5.4 - Prob. 4ECh. 5.4 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 5.4 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 5.4 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 5.4 - 514 Use Part 1 of the Fundamental Theorem of...Ch. 5.4 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 5.4 - 514 Use Part 1 of the Fundamental Theorem of...Ch. 5.4 - 514 Use Part 1 of the Fundamental Theorem of...Ch. 5.4 - Use Part 1 of the Fundamental Theorem of Calculus...Ch. 5.4 - Find the derivative of the function....Ch. 5.4 - 514 Use Part 1 of the Fundamental Theorem of...Ch. 5.4 - On what interval is the curve y=0xt2t2+t+2dt...Ch. 5.4 - Prob. 24ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Find a function f and a number a such that...Ch. 5.4 - A manufacturing company owns a major piece of...Ch. 5.4 - A high-tech company purchases a new computing...Ch. 5.4 - Find the average value of the function on the...Ch. 5.4 - 15-18 Find the average value of the function on...Ch. 5.4 - Find the average value of the function on the...Ch. 5.4 - Find the average value of the function on the...Ch. 5.4 - Prob. 19ECh. 5.4 - Prob. 20ECh. 5.4 - Prob. 21ECh. 5.4 - Prob. 22ECh. 5.5 - Evaluate the integral by making the given...Ch. 5.5 - Prob. 2ECh. 5.5 - Prob. 3ECh. 5.5 - Prob. 4ECh. 5.5 - Prob. 5ECh. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Evaluate the indefinite integral. x2ex3dxCh. 5.5 - Prob. 9ECh. 5.5 - Prob. 10ECh. 5.5 - Evaluate the indefinite integral. (lnx)2xdxCh. 5.5 - Prob. 12ECh. 5.5 - Prob. 13ECh. 5.5 - Prob. 14ECh. 5.5 - Prob. 20ECh. 5.5 - Prob. 16ECh. 5.5 - Prob. 17ECh. 5.5 - Prob. 18ECh. 5.5 - Prob. 15ECh. 5.5 - Prob. 25ECh. 5.5 - Evaluate the indefinite integral. sinh2xcoshxdxCh. 5.5 - Evaluate the indefinite integral. sin(lnx)xdxCh. 5.5 - Prob. 23ECh. 5.5 - Prob. 24ECh. 5.5 - Prob. 19ECh. 5.5 - Prob. 26ECh. 5.5 - Prob. 27ECh. 5.5 - Prob. 28ECh. 5.5 - Prob. 29ECh. 5.5 - Prob. 30ECh. 5.5 - Prob. 31ECh. 5.5 - Prob. 32ECh. 5.5 - Prob. 36ECh. 5.5 - Evaluate the indefinite integral. 1+x1+x2dxCh. 5.5 - Prob. 33ECh. 5.5 - Prob. 34ECh. 5.5 - Prob. 37ECh. 5.5 - Prob. 38ECh. 5.5 - Evaluate the definite integral. 011+7x3dxCh. 5.5 - Evaluate the definite integral. 03dx5x+1Ch. 5.5 - Prob. 41ECh. 5.5 - Prob. 42ECh. 5.5 - Prob. 43ECh. 5.5 - Prob. 44ECh. 5.5 - Prob. 50ECh. 5.5 - Prob. 45ECh. 5.5 - Prob. 48ECh. 5.5 - Evaluate the definite integral. ee4dxxlnxCh. 5.5 - Prob. 49ECh. 5.5 - Prob. 47ECh. 5.5 - Evaluate the indefinite integral. /2/2x2sinx1+x6dxCh. 5.5 - Prob. 52ECh. 5.5 - Prob. 57ECh. 5.5 - 78. Evaluate by making a substitution and...Ch. 5.5 - Prob. 59ECh. 5.5 - Prob. 60ECh. 5.5 - Prob. 61ECh. 5.5 - Prob. 62ECh. 5.5 - Prob. 63ECh. 5.5 - Prob. 64ECh. 5.5 - Prob. 65ECh. 5.5 - Prob. 66ECh. 5.5 - 89. If f is continuous on , prove that For the...Ch. 5.5 - Prob. 68ECh. 5.5 - Prob. 69ECh. 5.5 - Find the average value of the function on the...Ch. 5.5 - Prob. 54ECh. 5.5 - Prob. 56ECh. 5.5 - Find the average value of the function on the...Ch. 5 - Prob. 1RCCCh. 5 - Prob. 2RCCCh. 5 - Prob. 3RCCCh. 5 - Prob. 6RCCCh. 5 - Prob. 4RCCCh. 5 - Prob. 7RCCCh. 5 - Prob. 5RCCCh. 5 - Prob. 9RCCCh. 5 - Prob. 10RCCCh. 5 - Prob. 1RQCh. 5 - Prob. 2RQCh. 5 - Prob. 3RQCh. 5 - Prob. 4RQCh. 5 - Prob. 5RQCh. 5 - Prob. 6RQCh. 5 - Prob. 7RQCh. 5 - Prob. 8RQCh. 5 - Determine whether the statement is true or false....Ch. 5 - Prob. 10RQCh. 5 - Prob. 11RQCh. 5 - Prob. 12RQCh. 5 - Prob. 13RQCh. 5 - 14. Determine whether the statement is true or...Ch. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - Determine whether the statement is true or false....Ch. 5 - Prob. 18RQCh. 5 - Prob. 1RECh. 5 - Prob. 2RECh. 5 - Prob. 3RECh. 5 - Prob. 4RECh. 5 - Prob. 5RECh. 5 - Prob. 6RECh. 5 - Prob. 7RECh. 5 - Prob. 8RECh. 5 - Evaluate the integral, if it exists. 01(1x9)dxCh. 5 - Prob. 10RECh. 5 - Prob. 11RECh. 5 - Prob. 12RECh. 5 - Prob. 13RECh. 5 - Prob. 14RECh. 5 - Prob. 16RECh. 5 - Prob. 15RECh. 5 - Prob. 18RECh. 5 - Evaluate the integral, if it exists....Ch. 5 - Prob. 20RECh. 5 - Prob. 19RECh. 5 - Prob. 21RECh. 5 - Prob. 22RECh. 5 - Prob. 23RECh. 5 - Prob. 24RECh. 5 - Prob. 25RECh. 5 - Evaluate the integral, if it exists. cos(lnx)xdxCh. 5 - Prob. 27RECh. 5 - Prob. 28RECh. 5 - Prob. 29RECh. 5 - Prob. 30RECh. 5 - Prob. 31RECh. 5 - Prob. 32RECh. 5 - Prob. 33RECh. 5 - Prob. 34RECh. 5 - Prob. 35RECh. 5 - Prob. 36RECh. 5 - Prob. 37RECh. 5 - Prob. 38RECh. 5 - Prob. 39RECh. 5 - Prob. 40RECh. 5 - Prob. 41RECh. 5 - A particle moves along a line with velocity...Ch. 5 - Prob. 43RECh. 5 - Prob. 44RECh. 5 - Prob. 45RECh. 5 - Prob. 48RECh. 5 - Prob. 49RECh. 5 - Prob. 50RECh. 5 - Prob. 8RCCCh. 5 - Prob. 46RECh. 5 - If f is a continuous function, what is the limit...
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebraic Complexity with Less Relations; Author: The University of Chicago;https://www.youtube.com/watch?v=ZOKM1JPz650;License: Standard Youtube License
Strassen's Matrix Multiplication - Divide and Conquer - Analysis of Algorithm; Author: Ekeeda;https://www.youtube.com/watch?v=UnpySHwAJsQ;License: Standard YouTube License, CC-BY
Trigonometric Equations with Complex Numbers | Complex Analysis #6; Author: TheMathCoach;https://www.youtube.com/watch?v=zdD8Dab1T2Y;License: Standard YouTube License, CC-BY