Figure 5-19 gives the free-body diagram for four situations in which an object is pulled by several forces across a frictionless floor, as seen from overhead. In which situations does the acceleration
To Find
a) Which situation have x component of acceleration.
b) Which situation have y component of acceleration.
c) Direction of acceleration for each situation.
Answer to Problem 1Q
Solution
a) 2, 3 and 4.
b) 1, 3 and 4.
c) 1 – Along + y-axis, 2- Along + x-axis, 3- In 4th quadrant and 4- In 3rd quadrant.
Explanation of Solution
1) Concept:
Using the concept of net force from the Newton’s second law of motion, we can find the net force acting on the given object for given conditions.
2) Calculations:
a) According to Newton’s second law net force is product of mass and acceleration.
If we want x component acceleration there must be net force in x direction
So, For situation 1
Net force in x direction
So, there is no x component of acceleration.
For Situation 2
Net Force in x direction
As net force is 1N, x component of acceleration is present.
For Situation 3
Net Force in x direction
As net force is 1N, x component of acceleration is present.
For Situation 4
Net Force in x direction
As net force is 1N, x component of acceleration is present.
b)
For situation 1
Net force in y direction
So, there is y component of acceleration.
For Situation 2
Net Force in y direction
As net force is no y component of acceleration is present.
For Situation 3
Net Force in y direction
As net force is -1N, y component of acceleration is present.
For Situation 4
Net Force in y direction
As net force is -4N, y component of acceleration is present.
c) Direction of acceleration is in direction of net force.
For situation 1 there is only net force is only in +y direction so acceleration is also in +y direction.
For situation 2 there is only net force is only +x direction so acceleration is also +x direction.
For situation 3 as there is net force both in x and y direction and total net force is in fourth quadrant.
For situation 4 as there is net force both in x and y direction and total net force is in third quadrant.
Conclusion: Using the equations from the Newton’s second law of motion and vector algebra, it is possible to find the net force acting on the system.
Want to see more full solutions like this?
Chapter 5 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning