Concept explainers
Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book.
Calculating the Molecular Weight and Subunit Organization of a Protein From Its Metal Content The element molybdenum {atomic weight 95.95) constitutes 0.0K if the weight of nitrate reductase. If the molecular weight of nitrate reductase is 240,000, what is its likely quaternary structure"?

Interpretation:
The quaternary structure of the nitrate reductase needs to be determined based on its molecular weight and percentage of element molybdenum with atomic weight 95.95 present in it.
Concept introduction:
Nitrate reductase’s quaternary structure can be determined by calculating molecular weight of the molybdenum and its number of moles in nitrate reductase.
From the number of moles of a species and its molar mass, mass can be calculated as follows:
Here, n is number of moles and M is molar mass.
Answer to Problem 1P
Molecular weight of molybdenum=192 g/mol
Number of moles of molybdenum= 2.00 mol
Nitrate reductase’s quaternary structure consists of two peptide chain and each peptide has one mol of molybdenum. Thus, it is a dimer.
Explanation of Solution
The Nitrate reductase’s quaternary structure can be determined by calculating number of moles of the molybdenum in a nitrate reductase where one mol of molybdenum is constituted by each peptide.
Molecular weight of molybdenum = nitrate reductase’s molecular weight × molybdenum percentage in nitrate reductase
Therefore,
Molecular weight of molybdenum is used to determine the number of moles of molybdenum in nitrate reductase as follows:
Here, m is molecular weight of molybdenum present in nitrate reductase and M is atomic weight or molar mass of the molybdenum.
Putting the values,
Thus, the number of moles of molybdenum in nitrate reductase is 2.00 mol.
As we know that, one mol of molybdenum is constituted by each peptide. Therefore, nitrate reductase is dimer which is made up of two equivalent peptide chains. And each peptide chain consists of one mole of the molybdenum.
Molecular weight of molybdenum is calculated by using molecular weight of nitrate reductase and molybdenum percentage. The value of molecular weight of molybdenum is needed in finding the number of moles of molybdenum in nitrate reductase. From these calculations, it is determined that the quaternary structure of nitrate reductase constitutes two peptide chains and each chain has one mol of molybdenum.
Want to see more full solutions like this?
Chapter 5 Solutions
BIOCHEMISTRY (HARDBACK) W/ACCESS CODE
- Show the fate of the hydrogen on carbon-2 of glucose.arrow_forwardImagine that aldolase can react with the seven carbon molecule Sedoheptulose-1,7-bisphosphate (below). Use the mechanism to predict the two products generated.arrow_forwardShow the mechanisms of PGK and PFK-1. How are they different?arrow_forward
- Show the fate of the proton on the 4-Oxygen molecule of F-1,6-BP.arrow_forwardSodium borohydride (NaBH4) is a potent inhibitor of aldolase. It is known to ONLY inhibit theenzyme when it is complexed with substrate. Treatment of the enzyme alone has no effect.What is the mechanism for this inhibition?arrow_forwardA non-hydrolysable ATP (AMPPNP - below) is ingested by a graduate student on a dare. Whateffects would you anticipate on his metabolism?arrow_forward
- Show the mechanism for the acid-catalyzed formation of an [α-1,6] glycosidic linkagebetween two molecules of α-D-glucopyranose. Please sketch the structure and use arrows showing electron flow!arrow_forwardI am a Biochemistry student and I am confused on how to analyze FRAP Analysis using Excel Spread Sheets. The following spread sheet has my 0 minute data listed at top and the 4 minute data listed on the bottom. Sheet: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EXjrCizWiXRPmpittqZA12IB8EkB5eE8iaRqj_iun-IAtg?rtime=Wo9zPHFY3Ug The formula for FRAP Analysis is: FRAP value = A (4 min sample) - A (0 min sample) over A (4 min 30 uM ascorbic acid) - A (0 min 30 uM ascorbic acid) multiplied by 30 uM and the dilution factor of 1/10arrow_forwardHO Fill in the missing boxes. ON 800 NO NO Glucose ATP NADH Hexokinase 1,3-Bisphosphoglycerate Mg2+ ADP NAD+, Pi Phosphoglucose Isomerase Glucose-6-Phosphate ON 沁 Glyceraldehyde-3-Phosphate HO حلمة ADP ADP Phospho Mg2+ glycerate Dihydroxyacetone Phosphate ATP kinase ATP Phosphoglycerate 3-phosphoglycerate Mutase H₁₂O Fructose-6-Phosphate ATP Mg2+ ADP Fructose-1,6-Bisphosphate 2-phosphoglycerate H₂O Phosphoenolpyruvate ADP Mg2+ ATP Pyruvatearrow_forward
- In a diffraction experiment of a native crystal, intensity of reflection (-1 0 6) is equivalent to the intensity of reflection (1 0 -6). true or false?arrow_forwardin an x-ray diffraction experiment, moving the detector farther away from the crystal will allow collection of reflection of reflections with high Miller indices. true or false?arrow_forwardShow the mechanism for the acid-catalyzed formation of an [α-1,6] glycosidic linkagebetween two molecules of α-D-glucopyranose.arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
