Concept explainers
Compare the net force on a heavy trunk when it’s (a) at rest on the floor; (b) being slid across the floor at constant speed; (c) being pulled upward in an elevator whose cable tension equals the combined weight of the elevator and trunk; and (d) sliding down a frictionless ramp.
(a)
Answer to Problem 1FTD
Explanation of Solution
According to Newton’s first law of motion a body will remain in rest until it is acted upon by external unbalanced force. Therefore the net force acting on a body at rest is zero.
The forces acting on a body are weight of the body which is down ward and normal reaction which is upward. For a body at rest on the floor therefore the normal reaction will be equal to that of weight of the body. Thus net force will be zero.
Conclusion:
Thus, the net force on a heavy trunk when it is at rest on the floor is zero.
(b)
Answer to Problem 1FTD
Explanation of Solution
According to Newton’s first law of motion a body will remain in uniform motion until it is acted upon by external unbalanced force. Therefore the net force acting on a body in uniform motion is zero.
The forces acting on the trunk are the weight of the trunk which is acting downward and normal reaction which is acting upward, driving force along the direction of motion, air resistance opposite to the direction of force and friction opposite to the direction of motion. The normal reaction balances weight of the trunk and driving force balances the sum of air resistance and friction. Thus net force acting on a constant speed car is zero.
Conclusion:
Thus, the net force on a heavy trunk when it is being slid across the floor at constant speed is zero.
(c)
Answer to Problem 1FTD
Explanation of Solution
According to Newton’s first law of motion a body will remain in uniform motion until it is acted upon by external unbalanced force.
The forces acting on the elevator and trunk is the weight of the body acting downward and tension of the cable acting upward. Since both are same net force acting on the system is zero. Thus total acceleration is zero. Therefore net force on elevator and trunk is zero.
Conclusion:
Thus, the net force on a heavy trunk when it is being pulled upward in an elevator whose cable tension equals the combined weight of the elevator and trunk is zero
(d)
Answer to Problem 1FTD
Explanation of Solution
According to Newton’s first law of motion a body will move with acceleration only if there is any net force acting on it.
The trunk sliding down is similar to free fall. The only force is the weight of the body which is downward. Therefore net force on the trunk is downward.
Conclusion:
Thus, the net force on a heavy trunk when it is sliding down a frictionless ramp is downward.
Want to see more full solutions like this?
Chapter 5 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Additional Science Textbook Solutions
Microbiology with Diseases by Body System (5th Edition)
Anatomy & Physiology (6th Edition)
Campbell Biology (11th Edition)
Introductory Chemistry (6th Edition)
Human Anatomy & Physiology (2nd Edition)
Cosmic Perspective Fundamentals
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- pls helparrow_forwardpls helparrow_forward6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University