An object is subject to two forces that do not point in opposite directions. Is it possible to choose their magnitudes so that the object is in equilibrium? Explain.
An object is subject to two forces that do not point in opposite directions. Is it possible to choose their magnitudes so that the object is in equilibrium? Explain.
An object is subject to two forces that do not point in opposite directions. Is it possible to choose their magnitudes so that the object is in equilibrium? Explain.
Expert Solution & Answer
To determine
To find: Whether the object is in equilibrium or not.
Answer to Problem 1CQ
The object is not in equilibrium.
Explanation of Solution
Given data:
An object is subjected to two forces that do not point in opposite directions. It is required to find whether the object is in equilibrium condition or not.
Formula used:
Write the expression for an equilibrium condition of the forces on the object as follows:
∑F=0 (1)
Here,
∑F is the sum of the forces acting on any object.
Explanation:
From Equation (1), if the sum of the forces acting on the object is zero, then the object will be in equilibrium condition.
If the two forces are equal in magnitude and opposite to each other, then the two forces cancel out and the net force becomes zero.
From the given data, the two forces are not in the opposite directions. Therefore, the two forces do not cancel each other out and the net force will be available on the object. Thus, the object is not in the equilibrium condition.
Conclusion:
Thus, the object is not in equilibrium.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
4
Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad,
the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec².
What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector
in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle
by observing a right triangle. (20 pts)
Ꮎ
2 m
Figure 3: Particle pushed by rod along vertical path.
4
Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad,
the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec².
What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector
in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle
by observing a right triangle. (20 pts)
Ꮎ
2 m
Figure 3: Particle pushed by rod along vertical path.
please solve and answer the question correctly. Thank you!!
Chapter 5 Solutions
College Physics: A Strategic Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.