College Physics: A Strategic Approach, Books a la Carte Edition (4th Edition)
College Physics: A Strategic Approach, Books a la Carte Edition (4th Edition)
4th Edition
ISBN: 9780134700502
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 19P

It takes the elevator in a skyscraper 4.0 s to reach its cruising speed of 10m/s. A 60 kg passenger gets aboard on the ground floor. What is the passenger's apparent weight

a. Before the elevator starts moving?

b. While the elevator is speeding up?

c. After the elevator reaches its cruising speed?

a.

Expert Solution
Check Mark
To determine

To find: The apparent weight of the passenger before the elevator starts moving.

Answer to Problem 19P

Solution: The apparent weight of the passenger before the elevator starts moving is 590N.

Explanation of Solution

Given data:

Mass of the passenger (m) is 60 kg.

Cruising speed of the elevator is 10ms.

Time taken by the elevator to reach its cruising speed is 4.0 s.

Formula used:

The expression for apparent weight of the passenger before the elevator starts moving is as follows:

wapp=m(g+ay) (1)

Here,

m is the mass of the passenger.

g is the acceleration due to gravity, which is 9.8ms2, and

ay is the acceleration of the passenger.

Two forces act on the passenger along a single vertical line. They are the downward pull of the gravity and the upward push of the elevator.

The elevator is at rest and so is the passenger before the elevator starts moving up. Therefore, the acceleration of the passenger before the elevator starts moving is 0ms2.

ay=0ms2

Calculation of apparent weight of the passenger before the elevator starts moving:

Substitute 60 kg for m, 9.8ms2 for g, and 0ms2 for ay in Equation (1).

wapp=(60kg)(9.8ms2+0ms2)=(60kg)(9.8ms2)=588kgms2590N {1kgms2=1N}

Conclusion:

Thus, the apparent weight of the passenger before the elevator starts moving is 590N.

b.

Expert Solution
Check Mark
To determine

To find: The apparent weight of the passenger while the elevator is speeding up.

Answer to Problem 19P

Solution: The apparent weight of the passenger while the elevator is speeding up is 740N.

Explanation of Solution

The expression to find the acceleration is as follows:

ay=vfviΔt (2)

Here,

vi is the initial speed of the elevator.

vf is the final speed of the elevator (cruising speed), and

Δt is the time taken by the elevator to reach its cruising speed.

The speed of the elevator initially is 0ms and gradually reaches its cruising speed of 10ms in 4 seconds.

Therefore, the initial speed of the elevator is 0ms.

vi=0ms

And, the final speed of the elevator is 10ms.

vf=10ms

Calculation of acceleration:

Substitute 0ms for vi, 10ms for vf, and 4.0 s for Δt in Equation (2).

ay=10ms0ms4.0s=10ms4.0s=2.5ms2

Calculation of apparent weight of the passenger, while the elevator is speeding up:

Substitute 60 kg for m, 9.8ms2 for g, and 2.5ms2 for ay in Equation (1).

wapp=(60kg)(9.8ms2+2.5ms2)=(60kg)(12.3ms2)=738kgms2740N

Conclusion:

Thus, the apparent weight of the passenger while the elevator is speeding up is 740N.

c.

Expert Solution
Check Mark
To determine

To find: The apparent weight of the passenger after the elevator reaches its cruising speed.

Answer to Problem 19P

Solution:

The apparent weight of the passenger after the elevator reaches its cruising speed is 590N.

Explanation of Solution

As the elevator does not accelerate anymore after it reaches its cruising speed, the acceleration of the passenger is 0ms2.

ay=0ms2

Calculation of apparent weight of the passenger after the elevator reaches its cruising speed:

Substitute 60 kg for m, 9.8ms2 for g, and 0ms2 for ay in Equation (1).

wapp=(60kg)(9.8ms2+0ms2)=(60kg)(9.8ms2)=588kgms2590N

Conclusion:

Thus, the apparent weight of the passenger after the elevator reaches its cruising speed is 590N.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
06:04
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.

Chapter 5 Solutions

College Physics: A Strategic Approach, Books a la Carte Edition (4th Edition)

Ch. 5 - You are walking up an icy slope. Suddenly your...Ch. 5 - Three objects move through the air as shown in...Ch. 5 - Prob. 13CQCh. 5 - Raindrops can fall at different speeds; some fall...Ch. 5 - An airplane moves through the air at a constant...Ch. 5 - Is it possible for an object to travel in air...Ch. 5 - For Questions 17 through 20, determine the tension...Ch. 5 - For Questions 17 through 20, determine the tension...Ch. 5 - For Questions 17 through 20, determine the tension...Ch. 5 - For Questions 17 through 20, determine the tension...Ch. 5 - In Figure Q5.21, block 2 is moving to the right....Ch. 5 - The wood block in Figure Q5.22 is at rest on a...Ch. 5 - Prob. 23MCQCh. 5 - Prob. 24MCQCh. 5 - Prob. 25MCQCh. 5 - While standing in a low tunnel, you raise your...Ch. 5 - A 5.0 kg dog sits on the floor of an elevator that...Ch. 5 - A 3.0 kg puck slides due east on a horizontal...Ch. 5 - Eric has a mass of 60 kg. He is standing on a...Ch. 5 - Prob. 30MCQCh. 5 - A football player at practice pushes a 60 kg...Ch. 5 - Two football players are pushing a 60 kg blocking...Ch. 5 - Land Rover ads used to claim that their vehicles...Ch. 5 - A truck is traveling at 30 m/s on a slippery road....Ch. 5 - The three ropes in Figure P5.1 are tied to a...Ch. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - A construction crew would like to support a 1000...Ch. 5 - When you bend your knee, the quadriceps muscle is...Ch. 5 - An early submersible craft for deep-sea...Ch. 5 - Prob. 7PCh. 5 - A 65 kg student is walking on a slackline, a...Ch. 5 - Prob. 9PCh. 5 - The forces in Figure P5.10 are acting on a 2.0 kg...Ch. 5 - The forces in Figure P5.11 are acting on a 2.0 kg...Ch. 5 - A horizontal rope is tied to a 50 kg box on...Ch. 5 - Prob. 13PCh. 5 - In a head-on collision, a car stops in 0.10 s from...Ch. 5 - An astronauts weight on earth is 800 N. What is...Ch. 5 - A woman has a mass of 55.0 kg. a. What is her...Ch. 5 - Prob. 17PCh. 5 - a. How much force does an 80 kg astronaut exert on...Ch. 5 - It takes the elevator in a skyscraper 4.0 s to...Ch. 5 - Riders on the Power Tower are launched skyward...Ch. 5 - Zach, whose mass is 80 kg, is in an elevator...Ch. 5 - Prob. 22PCh. 5 - Figure P5.23 shows the velocity graph of a 75 kg...Ch. 5 - Prob. 24PCh. 5 - A 23 kg child goes down a straight slide inclined...Ch. 5 - Prob. 26PCh. 5 - Two workers are sliding a 300 kg crate across the...Ch. 5 - A 4000 kg truck is parked on a 7.0 slope. How big...Ch. 5 - A 1000 kg car traveling at a speed of 40 m/s skids...Ch. 5 - It is friction that provides the force for a car...Ch. 5 - The rolling resistance for steel on steel is quite...Ch. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 38PCh. 5 - Prob. 40PCh. 5 - A 1000 kg car pushes a 2000 kg truck that has a...Ch. 5 - A 2200 kg truck has put its front bumper against...Ch. 5 - Blocks with masses of 1.0 kg, 2.0 kg, and 3.0 kg...Ch. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Each of 100 identical blocks sitting on a...Ch. 5 - A 500 kg piano is being lowered into position by a...Ch. 5 - Dana has a sports medal suspended by a long ribbon...Ch. 5 - Prob. 51GPCh. 5 - Your forehead can withstand a force of about 6.0...Ch. 5 - A 50 kg box hangs from a rope. What is the tension...Ch. 5 - Prob. 54GPCh. 5 - A 50 kg box hangs from a rope. What is the tension...Ch. 5 - A fisherman has caught a very large, 5.0 kg fish...Ch. 5 - Riders on the Tower of Doom, an amusement park...Ch. 5 - Prob. 58GPCh. 5 - Seat belts and air bags save lives by reducing the...Ch. 5 - Prob. 60GPCh. 5 - A 20,000 kg rocket has a rocket motor that...Ch. 5 - Youve always wondered about the acceleration of...Ch. 5 - Prob. 63GPCh. 5 - An impala is an African antelope capable of a...Ch. 5 - Josh starts his sled at the top of a 3.0-m-high...Ch. 5 - Prob. 67GPCh. 5 - Prob. 68GPCh. 5 - Prob. 69GPCh. 5 - Prob. 70GPCh. 5 - Prob. 71GPCh. 5 - Prob. 72GPCh. 5 - Prob. 73GPCh. 5 - Its possible for a determined group of people to...Ch. 5 - Prob. 75GPCh. 5 - Prob. 77GPCh. 5 - Prob. 79GPCh. 5 - Prob. 80GPCh. 5 - Prob. 82GPCh. 5 - Prob. 83GPCh. 5 - Prob. 84GPCh. 5 - MCAT-Style Passage Problems Sliding on the Ice In...Ch. 5 - MCAT-Style Passage Problems Sliding on the Ice In...Ch. 5 - MCAT-Style Passage Problems Sliding on the Ice In...Ch. 5 - MCAT-Style Passage Problems Sliding on the Ice In...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License