It takes the elevator in a skyscraper 4.0 s to reach its cruising speed of 10m/s. A 60 kg passenger gets aboard on the ground floor. What is the passenger's apparent weight
a. Before the elevator starts moving?
b. While the elevator is speeding up?
c. After the elevator reaches its cruising speed?
a.
To find: The apparent weight of the passenger before the elevator starts moving.
Answer to Problem 19P
Solution: The apparent weight of the passenger before the elevator starts moving is
Explanation of Solution
Given data:
Mass of the passenger
Cruising speed of the elevator is
Time taken by the elevator to reach its cruising speed is 4.0 s.
Formula used:
The expression for apparent weight of the passenger before the elevator starts moving is as follows:
Here,
Two forces act on the passenger along a single vertical line. They are the downward pull of the gravity and the upward push of the elevator.
The elevator is at rest and so is the passenger before the elevator starts moving up. Therefore, the acceleration of the passenger before the elevator starts moving is
Calculation of apparent weight of the passenger before the elevator starts moving:
Substitute 60 kg for
Conclusion:
Thus, the apparent weight of the passenger before the elevator starts moving is
b.
To find: The apparent weight of the passenger while the elevator is speeding up.
Answer to Problem 19P
Solution: The apparent weight of the passenger while the elevator is speeding up is
Explanation of Solution
The expression to find the acceleration is as follows:
Here,
The speed of the elevator initially is
Therefore, the initial speed of the elevator is
And, the final speed of the elevator is
Calculation of acceleration:
Substitute
Calculation of apparent weight of the passenger, while the elevator is speeding up:
Substitute 60 kg for
Conclusion:
Thus, the apparent weight of the passenger while the elevator is speeding up is
c.
To find: The apparent weight of the passenger after the elevator reaches its cruising speed.
Answer to Problem 19P
Solution:
The apparent weight of the passenger after the elevator reaches its cruising speed is
Explanation of Solution
As the elevator does not accelerate anymore after it reaches its cruising speed, the acceleration of the passenger is
Calculation of apparent weight of the passenger after the elevator reaches its cruising speed:
Substitute 60 kg for
Conclusion:
Thus, the apparent weight of the passenger after the elevator reaches its cruising speed is
Want to see more full solutions like this?
Chapter 5 Solutions
College Physics: A Strategic Approach, Books a la Carte Edition (4th Edition)
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Campbell Biology in Focus (2nd Edition)
Microbiology: An Introduction
Applications and Investigations in Earth Science (9th Edition)
Chemistry: Structure and Properties (2nd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning