Concept explainers
Two unfortunate climbers, roped together, are sliding freely down an icy mountainside. The upper climber (mass 75 kg) is on a slope at 12° to the horizontal, but the lower climber (mass 63 kg) has gone over the edge to a steeper slope at 38°. (a) Assuming frictionless ice and a massless rope, what’s the acceleration of the pair? (b) The upper climber manages to stop the slide with an ice ax. After the climbers have come to a complete stop, what force must the ax exert against the ice?
Learn your wayIncludes step-by-step video
Chapter 5 Solutions
EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Concepts of Genetics (12th Edition)
Microbiology: An Introduction
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: A Molecular Approach (4th Edition)
- Let us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forwardTwo blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forwardIf the vector components of the position of a particle moving in the xy plane as a function of time are x(t)=(2.5ms2)t2i and y(t)=(5.0ms3)t3j, when is the angle between the net force on the particle and the x axis equal to 45?arrow_forward
- A 1370-kg car is skidding to a stop along a horizontal surface. The car decelerates from 27.6 m/s to a rest position in 3.15 seconds. Assuming negligible air resistance, determine the coefficient of friction between the car tires and the road surface.arrow_forwardA figure skater has a mass of 40 kg and her partner's mass is 50 kg. She pushes against the ice with a force of 120 N, causing her and her partner to move forward. Calculate the pair’s acceleration. Assume that all forces opposing the motion, such as friction and air resistance, total 5.0 N.arrow_forwardyou are standing on a train which begins to accelerate away at 4.50 m/s. If you have a mass of 70 kg, what is the minimum force of friction required between your feet and the train so that you do not slide backwards relative to the train?arrow_forward
- Two crates, one with mass 4.00 kg and the other with 6.00 kg, sit on the frictionless surface of a frozen pond, connected by a light rope. A woman wearing golf shoes (so she can get traction on the ice) pulls horizontally on the 6.00-kg crate with a force F that gives the crate an acceleration of 2.50 m/s22. (a) What is the acceleration of the 4.00- kg crate? (b) Draw a free- body diagram for the 4.00-kg crate. Use that diagram and Newton's second law to find tension T in the rope that connects the two crates. (c) Draw a free-body diagram for 6.00- kg crate. What is the direction of the net force on the 6.00-kg crate? Which is larger in magnitude, force T, or force F? (d) Use part (c) and Newton's second law to calculate the magnitude of the force F.arrow_forwardA high performance jet, mass 2450 kg, has twin jet engines. Each jet engine can develop 25 000 N of thrust. (a) What is the maximum acceleration the jet can sustain in a vertical climb? (b) How long would it take the jet to reach Mach 3 in horizontal flight starting from 50 m/s? Ignore wind resistance and use the freezing point of water for the air temperature.arrow_forwardA 120-kg astronaut is riding in a rocket sled that is sliding along an inclined plane. The sled has a horizontal component of acceleration of 5.0 m/s2 and a downward component of 3.8 m/s2 . Calculate the magnitude of the force on the rider by the sled. (Hint: Remember that gravitational acceleration must be considered.)arrow_forward
- The coefficient of kinetic friction between the block on the ramp and the ramp is 0.35, the angle θ is 32 degrees, m1 is 11.6 kg, and m2 is 23.4 kg. (a) What is the magnitude of the acceleration of the blocks in m/s2? (b) What is the tension in the string in N?arrow_forwardA certain cable of an elevator is designed to exert a force of 4.5 × 10^4 N. If the maximum acceleration that a loaded car can withstand is 3.5 m/s2, what is the combined mass of the car and its contents?arrow_forwardTwo buckets of sand hang from opposite ends of a rope that passes over an ideal pulley. Onebucket is full and weighs 120 N; the other bucket is only partlyfilled and weighs 63 N. (a) Initially, you hold onto the lighterbucket to keep it from moving. What is the tension in the rope?(b) You release the lighter bucket and the heavier one descends.What is the tension in the rope now? (c) Eventually the heavierbucket lands and the two buckets come to rest. What is the tension in the rope now? Show your work and explainarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning