Properties of integrals Suppose that ∫ 1 4 f ( x ) d x = 6 , and ∫ 1 4 g ( x ) d x = 4 , and ∫ 3 4 f ( x ) d x = 2 . Evaluate the following integrals or state that there is not enough information. 40. − ∫ 4 1 2 f ( x ) d x
Properties of integrals Suppose that ∫ 1 4 f ( x ) d x = 6 , and ∫ 1 4 g ( x ) d x = 4 , and ∫ 3 4 f ( x ) d x = 2 . Evaluate the following integrals or state that there is not enough information. 40. − ∫ 4 1 2 f ( x ) d x
Solution Summary: The author evaluates the value of integral -displaystyle underset4overset
Properties of integralsSuppose that
∫
1
4
f
(
x
)
d
x
=
6
, and
∫
1
4
g
(
x
)
d
x
=
4
, and
∫
3
4
f
(
x
)
d
x
=
2
. Evaluate the following integrals or state that there is not enough information.
40.
−
∫
4
1
2
f
(
x
)
d
x
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
=
Q6 What will be the allowable bearing capacity of sand having p = 37° and ydry
19 kN/m³ for (i) 1.5 m strip foundation (ii) 1.5 m x 1.5 m square footing and
(iii)1.5m x 2m rectangular footing. The footings are placed at a depth of 1.5 m
below ground level. Assume F, = 2.5. Use Terzaghi's equations.
0
Ne
Na
Ny
35 57.8 41.4 42.4
40 95.7 81.3 100.4
Q1 The SPT records versus depth are given in table below. Find qan for the raft 12%
foundation with BxB-10x10m and depth of raft D-2m, the allowable
settlement is 50mm.
Elevation, m 0.5 2
2 6.5 9.5 13 18 25
No.of blows, N 11 15 29 32 30 44
0
estigate shear
12%
Q2 A/ State the main field tests which may be carried out to investigate shear
strength of a soil layer?
B/ What are the main factors that affecting the spacing and number of
boreholes for a given project?
C/ Illustrate the causes of disturbance of Shelby tubes samples.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY