(i)
The long- time average number of injury crashes per year at the site.
Answer to Problem 18P
Explanation of Solution
Given:
Following information has been given to us: Length of road segment
AADT
Total number of injury crashes for 10 years
Total number of fatal crashes for 10 years
Total number of property crashes for 10 years
Assume
The applicable safety performance functions for injury, fatal, and property damage only
crashes are:
Calculation:
We have the following formula for the number of fatal crashes:
Where,
Substituting the values, we have
Conclusion:
Therefore, the long- time average number of injury crashes per year at the site is
(ii)
The long-time average number of fatal crashes per year at the site.
Answer to Problem 18P
Explanation of Solution
Given:
Following information has been given to us:
Length of road segment
AADT
Total number of injury crashes for 10 years
Total number of fatal crashes for 10 years
Total number of property crashes for 10 years
Assume
The applicable safety performance functions for injury, fatal, and property damage only
crashes are:
Calculation:
We have the following formula for the number of fatal crashes:
Where,
Substituting the values, we have
Conclusion:
Therefore, the number of fatal crashes per year at the site is
(iii)
The long-time average number of property damage only crashes per year at the site.
Answer to Problem 18P
Explanation of Solution
Given:
Following information has been given to us:
Length of road segment
AADT
Total number of injury crashes for 10 years
Total number of fatal crashes for 10 years
Total number of property crashes for 10 years
Assume
The applicable safety performance functions for injury, fatal, and property damage only
crashes are:
Calculation:
We have the following formula for the long-time average number of property damage only crashes per year at the site
Where,
Substituting the values, we have
Conclusion:
Therefore,the long-time average number of property damage only crashes per year at the site
Want to see more full solutions like this?
Chapter 5 Solutions
MindTap Engineering for Garber/Hoel's Traffic and Highway Engineering, 5th Edition, [Instant Access], 1 term (6 months)
- Direction: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forward1. Create Diagrams: Draw the shear and moment diagrams for the given beam. 8k 15k-ft B 12 k -6 ft- -8 ft--8 ft- -8 ft- 4k 4 ft 2 ftarrow_forward
- 10:46 Mechanics of Deform... ← CE104.2T.24.25. FA 1 5 of 6 2.5/10 Rigid bar ABCD is loaded and supported as shown. Steel [E=27800 ksi] bars (1) and (2) are unstressed before the load P is applied. Bar (1) has a cross- sectional area of 0.83 in.² and bar (2) has a cross- sectional area of 0.45 in.2. After load P is applied, the strain in bar (1) is found to be 670 με. Assume L₁=58 in., L2-94 in., a=26 in., b=22 in., and c=36 in. Determine: (a) the stresses in bars (1) and (2). (b) the vertical deflection VD of point D on the rigid bar. (c) the load P. A L₁ B L2 a b 223 D Stream Courses Calendar Morearrow_forwardanswer thisarrow_forwardexact answerarrow_forward
- Q2: For the overhanging beam BD shown, draw the "Influence Lines" for RB, RD S.F. at C (VC) and B.M. at C (Mc) using the static equilibrium method. A B 4 m 5 m 7 marrow_forwardQ1: Draw N.F.D, S.F.D and B.M.D for the frame shown below. Knowing that t support at A is hinge, and at D is roller. B 2 m 5 kN/m C 30 kN 2 D 5 marrow_forwardplease the correct answerarrow_forward
- Q1: Draw N.F.D, S.F.D and B.M.D for the frame shown below. Knowing that the support at A is hinge, and at D is roller. br Section C-D) 5 kN/m MC = 30x2) + (Dx *4) D لاک 15 B 2 m 2 m 30 kN DA DX 2 marrow_forwardQ2: For the overhanging beam AC shown, draw the "Influence Lines" for RA, RC, S.F. at B (VB) and B.M. at B (MB) using the static equilibrium method. 2 m B AC D 2 m 3 marrow_forwardANSWERarrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning