(i)
The long- time average number of injury crashes per year at the site.

Answer to Problem 18P
Explanation of Solution
Given:
Following information has been given to us: Length of road segment
AADT
Total number of injury crashes for 10 years
Total number of fatal crashes for 10 years
Total number of property crashes for 10 years
Assume
The applicable safety performance functions for injury, fatal, and property damage only
crashes are:
Calculation:
We have the following formula for the number of fatal crashes:
Where,
Substituting the values, we have
Conclusion:
Therefore, the long- time average number of injury crashes per year at the site is
(ii)
The long-time average number of fatal crashes per year at the site.

Answer to Problem 18P
Explanation of Solution
Given:
Following information has been given to us:
Length of road segment
AADT
Total number of injury crashes for 10 years
Total number of fatal crashes for 10 years
Total number of property crashes for 10 years
Assume
The applicable safety performance functions for injury, fatal, and property damage only
crashes are:
Calculation:
We have the following formula for the number of fatal crashes:
Where,
Substituting the values, we have
Conclusion:
Therefore, the number of fatal crashes per year at the site is
(iii)
The long-time average number of property damage only crashes per year at the site.

Answer to Problem 18P
Explanation of Solution
Given:
Following information has been given to us:
Length of road segment
AADT
Total number of injury crashes for 10 years
Total number of fatal crashes for 10 years
Total number of property crashes for 10 years
Assume
The applicable safety performance functions for injury, fatal, and property damage only
crashes are:
Calculation:
We have the following formula for the long-time average number of property damage only crashes per year at the site
Where,
Substituting the values, we have
Conclusion:
Therefore,the long-time average number of property damage only crashes per year at the site
Want to see more full solutions like this?
Chapter 5 Solutions
MindTap Engineering for Garber/Hoel's Traffic and Highway Engineering, 5th Edition, [Instant Access], 1 term (6 months)
- What are the total earned work hours at completion for the column forms?arrow_forward6000 units have been installed to date with 9,000 units to install. Labor costs are $23,300.00 to date. What is the unit cost for labor to date?arrow_forwardThe base rate for labor is $15/hr. The labor burden is 35% and 3% for small tools for the labor. There are 1000 units to install. Records indicate that trade workers can install 10 units per hour, per trade worker. The owners need 15% overhead and profit to pay bills, pay interest on loan and provide some profit to the partners. What is the minimum bid assuming no risk avoidance factor?arrow_forward
- 5. (20 Points) Consider a channel width change in the same 7-foot wide rectangular in Problem 4. The horizontal channel narrows as depicted below. The flow rate is 90 cfs, and the energy loss (headloss) through the transition is 0.05 feet. The water depth at the entrance to the transition is initially 4'. 1 b₁ TOTAL ENERGY LINE V² 129 У1 I b₂ TOP VIEW 2 PROFILE VIEW h₁ = 0.05 EGL Y₂ = ? a) b) c) 2 Determine the width, b₂ that will cause a choke at location 2. Determine the water depth at the downstream end of the channel transition (y₂) section if b₂ = 5 feet. Calculate the change in water level after the transition. Plot the specific energy diagram showing all key points. Provide printout in homework. d) What will occur if b₂ = = 1.5 ft.?arrow_forward4. (20 Points) A transition section has been proposed to raise the bed level a height Dz in a 7-foot wide rectangular channel. The design flow rate in the channel is 90 cfs, and the energy loss (headloss) through the transition is 0.05 feet. The water depth at the entrance to the transition section is initially 4 feet. b₁ = b = b2 1 TOTAL ENERGY LINE V² 129 Ут TOP VIEW 2 hloss = 0.05 " EGL Y₂ = ? PROFILE VIEW a) Determine the minimum bed level rise, Dz, which will choke the flow. b) If the step height, Dz = 1 ft, determine the water depth (y2) at the downstream end of the channel transition section. Calculate the amount the water level drops or rises over the step. c) Plot the specific energy diagram showing all key points. Provide printout in Bework. d) What will occur if Dz = 3.0 ft.?. Crest Front Viewarrow_forward1. (20 Points) Determine the critical depth in the trapezoidal drainage ditch shown below. The slope of the ditch is 0.0016, the side slopes are 1V:2.5H, the bottom width is b = 14', and the design discharge is 500 cfs. At this discharge the depth is y = 4.25'. Also, determine the flow regime and calculate the Froude number. Ye= ? Z barrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning




