For Exercises 1—16, identify which functions shown here ( f , g , h , and so on) have the given characteristics. f ( x ) = − 3 sec ( 2 x + π ) g ( x ) = − 3 cos ( 1 2 x − π 4 ) h ( x ) = 3 sin ( − 1 2 x − π 4 ) k ( x ) = sin ( π 2 x ) + 3 m ( x ) = 2 csc ( 2 x − π 4 ) − 3 n ( x ) = 3 tan ( x − π 2 ) p ( x ) = − 2 cot ( 1 2 x + π ) t ( x ) = − 3 + 2 cos x 12. Has a range of all real numbers
For Exercises 1—16, identify which functions shown here ( f , g , h , and so on) have the given characteristics. f ( x ) = − 3 sec ( 2 x + π ) g ( x ) = − 3 cos ( 1 2 x − π 4 ) h ( x ) = 3 sin ( − 1 2 x − π 4 ) k ( x ) = sin ( π 2 x ) + 3 m ( x ) = 2 csc ( 2 x − π 4 ) − 3 n ( x ) = 3 tan ( x − π 2 ) p ( x ) = − 2 cot ( 1 2 x + π ) t ( x ) = − 3 + 2 cos x 12. Has a range of all real numbers
Solution Summary: The author explains the properties of the general Sine and Cosine functions.
For Exercises 1—16, identify which functions shown here (f, g, h, and so on) have the given characteristics.
f
(
x
)
=
−
3
sec
(
2
x
+
π
)
g
(
x
)
=
−
3
cos
(
1
2
x
−
π
4
)
h
(
x
)
=
3
sin
(
−
1
2
x
−
π
4
)
k
(
x
)
=
sin
(
π
2
x
)
+
3
m
(
x
)
=
2
csc
(
2
x
−
π
4
)
−
3
n
(
x
)
=
3
tan
(
x
−
π
2
)
p
(
x
)
=
−
2
cot
(
1
2
x
+
π
)
t
(
x
)
=
−
3
+
2
cos
x
I want to learn this topic l dont know anything about it
Solve the linear system of equations attached using Gaussian elimination (not Gauss-Jordan) and back subsitution.
Remember that:
A matrix is in row echelon form if
Any row that consists only of zeros is at the bottom of the matrix.
The first non-zero entry in each other row is 1. This entry is called aleading 1.
The leading 1 of each row, after the first row, lies to the right of the leading 1 of the previous row.
PRIMERA EVALUACIÓN SUMATIVA
10. Determina la medida de los ángulos in-
teriores coloreados en cada poligono.
⚫ Octágono regular
A
11. Calcula es número de lados qu
poligono regular, si la medida
quiera de sus ángulos internos
• a=156°
A= (-2x+80
2
156 180-
360
0 = 24-360
360=24°
• a = 162°
1620-180-360
6=18-360
360=19
2=360=
18
12. Calcula las medida
ternos del cuadrilá
B
X+5
x+10
A
X+X+
Sx+6
5x=3
x=30
0
лаб
• Cuadrilátero
120°
110°
• α = 166° 40'
200=180-360
0 =
26-360
360=20
ひ=360
20
18 J
60°
⚫a=169° 42' 51.43"
169.4143180-340
0 = 10.29 54-360
360 10.2857
2=360
10.2857
@Sa
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY