For the given details, it should be given the reason for the different values of k between example 8-3 and table 8-1 and value of K should be expressed in unit of atm. L. Concept introduction: Boyle’s law can be defined as, A gas kept in the particular container at constant temperature. If the container of gas is compressed, the gaseous particle is compressed and the volume of container is decreased.. That is the volume of container is inversely proportional to the pressure of gas. As increasing the pressure of a particular gas the volume of gas will reduce. This indirect relationship between the pressure and volume of gas is termed as Boyles’s law. Mathematically this law can be written as, P ∝ V PV=k Where P is pressure and k is proportionality constant.
For the given details, it should be given the reason for the different values of k between example 8-3 and table 8-1 and value of K should be expressed in unit of atm. L. Concept introduction: Boyle’s law can be defined as, A gas kept in the particular container at constant temperature. If the container of gas is compressed, the gaseous particle is compressed and the volume of container is decreased.. That is the volume of container is inversely proportional to the pressure of gas. As increasing the pressure of a particular gas the volume of gas will reduce. This indirect relationship between the pressure and volume of gas is termed as Boyles’s law. Mathematically this law can be written as, P ∝ V PV=k Where P is pressure and k is proportionality constant.
Solution Summary: The author explains Boyle's law, which is inversely proportional to the pressure of a particular gas. The value of K is expressed in the unit of atm.
For the given details, it should be given the reason for the different values of k between example 8-3 and table 8-1 and value of K should be expressed in unit of atm. L.
Concept introduction:
Boyle’s law can be defined as,
A gas kept in the particular container at constant temperature. If the container of gas is compressed, the gaseous particle is compressed and the volume of container is decreased.. That is the volume of container is inversely proportional to the pressure of gas. As increasing the pressure of a particular gas the volume of gas will reduce. This indirect relationship between the pressure and volume of gas is termed as Boyles’s law.
Mathematically this law can be written as,
P∝V
PV=k
Where P is pressure and k is proportionality constant.
In the following reaction, what quantity in moles of CH₃OH are required to give off 4111 kJ of heat? 2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJ
Indicate the processes in the dismutation of Cu2O.
1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.
2600
2400
2200
2000
1800
1600
1400
1200
1000
800
Potential Energy (kJ)
600
400
200
0
-200-
-400
-600-
-800
(i) Cl₂ (g) + Pt(s) → 2Cl (g) + Pt(s)
(ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s)
Ea = 1550 kJ
Ea = 2240 kJ
(iii) Cl (g) + CICO (g) → Cl₂CO (g)
Ea
= 2350 kJ
AH=-950 kJ
ΔΗ = 575 ΚΙ
AH=-825 kJ
a. Draw the potential energy diagram for the reaction. Label the data points for clarity.
The potential energy of the reactants is 600 kJ
Reaction Progress
b. What is the overall chemical equation?
c. What is the overall change in enthalpy for the above chemical reaction?
d. What is the overall amount of activation energy for the above chemical reaction?
e. Which reaction intermediate would be considered a catalyst (if any) and why?
f. If you were to add 2700kJ of energy to the reaction (e.g. 2700 kl of heat or electricity), would
you be able to make the reaction reverse itself (i.e. have…