From the relative rates of effusion of two gases, the effusion time for a particular gas should be determined Concept introduction: Effusion is used to describe the passage of a gas through a tiny particle into an evacuated chamber. The rate of effusion is the measure of speed at which the gas is transferred to the chamber. According to Thomas Graham the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles. The relative rate of effusion of two gases at the same temperature and pressure are the inverse ratio of the square root of the masses of the gases particles. That is, R a t e o f e f f u s i o n f o r g a s 1 R a t e o f e f f u s i o n f o r g a s 2 = M 2 M 1 o r R a t e 1 R a t e 2 = ( M 2 M 1 ) 1 / 2 M 1 and M 2 are the molar masses of gas 1 and gas 2 This equation is known as Graham’s law of effusion. Effusion rate in some cases, equal to the volume of gas that effuses per unit volume.
From the relative rates of effusion of two gases, the effusion time for a particular gas should be determined Concept introduction: Effusion is used to describe the passage of a gas through a tiny particle into an evacuated chamber. The rate of effusion is the measure of speed at which the gas is transferred to the chamber. According to Thomas Graham the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles. The relative rate of effusion of two gases at the same temperature and pressure are the inverse ratio of the square root of the masses of the gases particles. That is, R a t e o f e f f u s i o n f o r g a s 1 R a t e o f e f f u s i o n f o r g a s 2 = M 2 M 1 o r R a t e 1 R a t e 2 = ( M 2 M 1 ) 1 / 2 M 1 and M 2 are the molar masses of gas 1 and gas 2 This equation is known as Graham’s law of effusion. Effusion rate in some cases, equal to the volume of gas that effuses per unit volume.
Solution Summary: The author explains how the effusion rate of a gas is inversely proportional to the square root of the masses of its particles.
Interpretation: From the relative rates of effusion of two gases, the effusion time for a particular gas should be determined
Concept introduction:
Effusion is used to describe the passage of a gas through a tiny particle into an evacuated chamber.
The rate of effusion is the measure of speed at which the gas is transferred to the chamber.
According to Thomas Graham the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles.
The relative rate of effusion of two gases at the same temperature and pressure are the inverse ratio of the square root of the masses of the gases particles. That is,
The table includes macrostates characterized by 4 energy levels (&) that are
equally spaced but with different degrees of occupation.
a) Calculate the energy of all the macrostates (in joules). See if they all have
the same energy and number of particles.
b) Calculate the macrostate that is most likely to exist. For this macrostate,
show that the population of the levels is consistent with the Boltzmann
distribution.
macrostate 1 macrostate 2 macrostate 3
ε/k (K) Populations
Populations
Populations
300
5
3
4
200
7
9
8
100
15
17
16
0
33
31
32
DATO: k = 1,38×10-23 J K-1
Don't used Ai solution
In an experiment, the viscosity of water was measured at different
temperatures and the table was constructed from the data obtained.
a) Calculate the activation energy of viscous flow (kJ/mol).
b) Calculate the viscosity at 30°C.
T/°C
0
20
40
60
80
η/cpoise 1,972 1,005 0,656 0,469 0,356
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.