
(A)
Interpretation:
The efficiency of a Carnot heat engine
Concept Introduction:
The expression to calculate the efficiency of a Carnot heat engine
Here, temperature of a low temperature heat reservoir is
(A)

Explanation of Solution
Given information:
High temperature reservoir is
Low temperature reservoir is
Calculate the efficiency of a Carnot heat engine
Substitute
Thus, the efficiency of a Carnot heat engine
(B)
Interpretation:
The efficiency of a Carnot heat engine
Concept Introduction:
The expression to calculate the efficiency of a Carnot heat engine
Here, temperature of a low temperature heat reservoir is
(B)

Explanation of Solution
Given information:
High temperature reservoir is
Low temperature reservoir is
Calculate the efficiency of a Carnot heat engine
Substitute
Thus, the efficiency of a Carnot heat engine
(C)
Interpretation:
The rate at which entropy the entropy of the universe is increased by the processes in the boiler and condenser.
Concept Introduction:
The steady state energy balance equation for the boiler.
Here, time taken is
Write the expression to calculate the net change in specific enthalpy
Here, constant pressure heat capacity of liquid is
Write the expression to calculate the change in entropy of a heat reservoir
Here, change in temperature is
Write the steady state entropy balance equation for boiler.
Here, total mass is
The formula to calculate the net entropy
Here, final entropy is
The expression to calculate the rate of heat
Here, enthalpy of formation is
The expression to calculate the change in specific entropy
The expression to calculate the rate at which entropy is generated within the boundaries of the system.
(C)

Explanation of Solution
Calculate the heat transfer of the boiler using the steady state equation.
Rewrite the steady state equation (3) by neglecting the work done, potential energy, and kinetic energy.
Calculate the net change in specific enthalpy
Substitute
Substitute
Calculate the change in entropy of a heat reservoir
Substitute
Calculate the entropy changes for the system that includes both the heat reservoir and the boiler.
Substitute
Write the internal energy equation.
Here, change in work added to the system through expansion or contraction of the system is
Since constant pressure heat capacity
Here, volume is
Substitute
Substitute
Calculate the net specific entropy
Here, enthalpy of vaporization is
Substitute
Substitute
Thus, the rate at which entropy is generated within the boiler is
Calculate the rate of heat
Substitute
Calculate the rate of entropy increase
Substitute
Calculate the change in specific entropy
Substitute
Calculate the rate at which entropy is generated within the boundaries of the system.
Substitute
Thus, the rate at which entropy is generated within the condenser is
Want to see more full solutions like this?
Chapter 4 Solutions
Fundamentals of Chemical Engineering Thermodynamics, SI Edition
- Please show all workarrow_forward2. A moving bed adsorption column needs to be designed to separate hydrophobic proteins from a fermentation broth. The following adsorption equilibrium data was observed in preliminary isotherm studies. The resin used was activated carbon with a porosity of 0.2. The overall mass transfer coefficient was determined to be 10 h¹, and the ratio of volumetric flow rate of broth to resin is 10. Determine the diameter of the column if the column height is limited to 2.5 m (indoor operation) with a flow rate of 20 m³/h, influent concentration of 7 g/L, and effluent concentration of 0.1 g/L. qi (mg/kg) Ci (g/L) 0.1 4.7 7.5 0.25 10.6 0.5 15.0 1.0 23.7 2.5 33.5 5.0 41.1 7.5arrow_forward3. You are given a mixture of four proteins, whose properties are listed in the table below. Propose a process to purify each protein so that you end up with four solutions of pure protein. What resin would you use to bind the protein(s)? What changes to the buffer would you make to desorb the protein(s)? Contains an N-terminal His6-tag. Two 50 kDa subunits contain a non-heme Fe2+ in the active site. Protein Size (kDa) pl Specific Properties A 100 6.0 B 40 7.7 C 240 8.3 Ꭰ 225 5.5 Contains FAD redox center and an NADH binding domain. Composed of six 40-kDa subunits, each of which contains a [2Fe-2S] cluster. Composed of three subunits: 100 kDa structural subunit, 75 kDa subunit with a molybdopterin center, and 50 kDa subunit with FAD and an NADH binding domain.arrow_forward
- b) Explain the key features of the Langmuir adsorption model - Drawing a diagram with empty and occupied sites. Show how new molecules would adsorb. drawing the diagram, showing free and empty sites, and their number (to use for next section) - Define the capacity and binding affinity parameters in terms of things shown on the diagram Defining the capacity and binding affinity parameters in terms of bound, free sites, and free molecules - Plot what would be a typical breakthrough curve and give an explanation approximately when breakthrough would occur plotting a typical sigmoidal breakthrough curve and saying it would certainly occur by the time capacity is used, but also could be much earlier if the affinity is lowarrow_forwardWater at 20°C flows at a steady average velocity of 5.25 m/s through a smooth pipe of diameter 5.08 cm. The flow is fully developed through the entire section of pipe. The total pipe length is 10.56 m, and there are two 90' elbows. Determine the friction coefficient and the head loss due to friction per meter length of the pipe. Control volume Prepared by Engr. Kirsten Gaarrow_forwardProblem 2. For an irreversible liquid phase reaction A -> B, the reaction rate is of the first order with respect to the reactant concentration C_A. this reaction is performed in a cascade of two identical CSTRs at 100 degrees Celsius. (same reactor size and isothermal). The inlet concentration of A of the first CSTR is 2mol/L. The outlet concentration of A of the 2nd CSTR is 0.5 mol/L. the inlet flow rate of the 1st reactor is 100 L/h. and the feed temperature is 20 degrees Celsius. The average heat capacity of the reactant/product/solvent mixture is a constant: 2J/g*K, the density of the mixture is a constant: 1 kg/L. The heat of reaction is 50 kJ/mol (exothermic). The reaction rate constant at 100 degrees Celsius is 0.5/h. (a) Determine the outlet concentration of A of the first CSTR (b) What is the heat transfer requirement for the first CSTR? (c) if this reaction is performed in a plug-flow reactor, what is the size of plug-flow reactor required for achieving the same conversion…arrow_forward
- The energy release (Q_g) and energy loss (Q_r) curves of an irreversible oxidation reaction are shown below. Q_r curves can be shifted by adjusting the feed temperature. Q,& QE E Qg (a) Are these points of intersection between energy release and energy loss curves stable operating conditions? Point of Intersection A Stable or Unstable B A D T (b) Which point represents the ignition condition? B с D E F Garrow_forwardProblem 1. For an irreversible liquid phase reaction 2A -> B, the reaction rate is of the 2nd order with respect to the reactant concentration CA. The concentration-dependent reaction rate is plotted below. This reaction is performed in a cascade of two identical CSTRS (same reactor size and temperature). The inlet concentration of A of the 1st CSTR is 2 mol/L. The outlet concentration of A of the 2nd CSTR is 1 mol/L. The inlet flow rate of the 1st reactor is 100 L/h. Please use the graphical method to determine the outlet concentration of A of the first CSTR and the size of each CSTR. Please briefly show the procedure for reactor size calculation. (-4-7) 15225050 45 40 35 30 0 0.5 11.761.5 C₂ Q C (mol.L¹) Co 20 2.5arrow_forward15.15 A 0.20-m-thick brick wall (k = 1.3 W/m K) separates the combustion zone of a furnace from its surroundings at 25°C. For an outside wall surface temperature of 100°C, with a convective heat-transfer coefficient of 18 W/m² K, what will be the inside wall surface temperature at steady-state conditions? .arrow_forward
- An MF membrane has pore-size distribution as follows: d(pore)0.33 fraction¼ 1.5 mm, d(pore)0.33 fraction¼ 1.0 mm, and d(pore)0.33 fraction¼ 0.5 mm. Required (a) Determine the distribution of flux density for each pore size. (b) Show by a plot the distribution of pore sizes and the distribution of flux density. solvearrow_forwardPlease show me your steps please thank you.arrow_forwardPlease show your work thanks.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





