Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
5th Edition
ISBN: 9780134689531
Author: Lee Johnson, Dean Riess, Jimmy Arnold
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.8, Problem 15E
To determine
To solve:
The given initial value problem.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
OR
16 f(x) =
Ef 16
χ
по
x²-2 410 | y = (x+2) + 4
Y-INT: y = 0
X-INT: X=0
VA: x=2
OA: y=x+2
0
X-INT: X=-2
X-INT: y = 2
VA
0
2
whole.
2-2
4
y - (x+2) = 27-270
+
xxx> 2
क्
above OA
(x+2) OA
x-2/x²+0x+0
2
x-2x
2x+O
2x-4
4
X<-1000 4/4/2<0 below Of
y
VA
X=2
X-2
OA
y=x+2
-2
2
(0,0)
2
χ
I need help solving the equation
3x+5=8
What is the domain, range, increasing intervals (theres 3), decreasing intervals, roots, y-intercepts, end behavior (approaches four times), leading coffiencent status (is it negative, positivie?) the degress status (zero, undifined etc ), the absolute max, is there a absolute minimum, relative minimum, relative maximum, the root is that has a multiplicity of 2, the multiplicity of 3.
Chapter 4 Solutions
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...
Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Consider the (22) symmetric matrix A=[abbd]. Show...Ch. 4.1 - Consider the (22) matrix A given by A=[abba],b0....Ch. 4.1 - Let A be a (22) matrix. Show that A and AT have...Ch. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - Prob. 3ECh. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - Prob. 5ECh. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - Prob. 7ECh. 4.2 - Prob. 8ECh. 4.2 - Prob. 9ECh. 4.2 - Prob. 10ECh. 4.2 - Prob. 11ECh. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - Prob. 13ECh. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - Prob. 17ECh. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - Prob. 19ECh. 4.2 - Let A=(aij) be a given (33) matrix. Form the...Ch. 4.2 - In Exercises 21 and 22, find all ordered pairs...Ch. 4.2 - In Exercises 21 and 22, find all ordered pairs...Ch. 4.2 - Let A=(aij) be the (nn) matrix specified thus:...Ch. 4.2 - Let A and B be (nn) matrices. Use Theorems 2 and 3...Ch. 4.2 - Suppose that A is a (nn) nonsingular matrix, and...Ch. 4.2 - Prob. 26ECh. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - a Let A be an (nn) matrix. If n=3, det(A) can be...Ch. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Prob. 34ECh. 4.3 - In Exercise 1-6, evaluate det(A) by using row...Ch. 4.3 - In Exercise 1-6, evaluate det(A) by using row...Ch. 4.3 - Prob. 3ECh. 4.3 - In Exercise 1-6, evaluate det(A) by using row...Ch. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - In Exercise 7-12, use only column interchanges or...Ch. 4.3 - Prob. 9ECh. 4.3 - In Exercise 7-12, use only column interchanges or...Ch. 4.3 - In Exercise 7-12, use only column interchanges or...Ch. 4.3 - Prob. 12ECh. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 23 and 24, use row operations to...Ch. 4.3 - In Exercise 23 and 24, use row operations to...Ch. 4.3 - Let A be a (nn) matrix. Use Theorem 7 to argue...Ch. 4.3 - Prove the corollary to Theorem 6. Hint: Suppose...Ch. 4.3 - Find examples of (22) matrices A and B such that...Ch. 4.3 - An (nn) matrix A is called skew symmetric if AT=A....Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - Prove property b of theorem 11. Hint: Begin with...Ch. 4.4 - Prove property c of Theorem 11. Theorem 11 Let A...Ch. 4.4 - Complete the proof of property a of Theorem 11....Ch. 4.4 - Let qt=t3-2t2-t+2; and for any nn matrix H, define...Ch. 4.4 - With qt as in Exercise 18, verify that qC is the...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - This problem establishes a special case of the...Ch. 4.4 - Consider the 22 matrix A given by A=abcd. The...Ch. 4.4 - Prob. 26ECh. 4.4 - Let qt=tn+an-1tn-1++a1t+a0, and define the nn...Ch. 4.4 - Prob. 28ECh. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Prob. 31ECh. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - If a vector x is a linear combination of...Ch. 4.5 - As in Exercise 18, calculate A10x for...Ch. 4.5 - Consider a (44) matrix H of the form...Ch. 4.5 - An (nn) matrix P is called idempotent if P2=P....Ch. 4.5 - Let P be an idempotent matrix. Show that the only...Ch. 4.5 - Let u be a vector in Rn such that uTu=1. Show that...Ch. 4.5 - Verify that if Q is idempotent, then so is IQ....Ch. 4.5 - Suppose that u and v are vectors in Rn such that...Ch. 4.5 - Show that any nonzero vector of the form au+bv is...Ch. 4.5 - Prob. 27ECh. 4.5 - Let A be a symmetric matrix and suppose that Au=u,...Ch. 4.5 - Prob. 29ECh. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - Prob. 2ECh. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - Prob. 18ECh. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - In Exercises 25 and 26, solve the linear system....Ch. 4.6 - In Exercises 25 and 26, solve the linear system....Ch. 4.6 - In Exercises 27-30, calculate x. x=[1+i2]Ch. 4.6 - In Exercises 27-30, calculate x. x=[3+i2i]Ch. 4.6 - In Exercises 27-30, calculate x. x=[12ii3+i]Ch. 4.6 - In Exercises 27-30, calculate x. x=[2i1i3]Ch. 4.6 - Prob. 31ECh. 4.6 - In Exercises 31-34, use linear algebra software to...Ch. 4.6 - Prob. 33ECh. 4.6 - Prob. 34ECh. 4.6 - Establish the five properties of the conjugate...Ch. 4.6 - Let A be an (mn) matrix, and let B be an (np)...Ch. 4.6 - Prob. 37ECh. 4.6 - An (nn) matrix A is called Hermitian if A*=A....Ch. 4.6 - Let p(t)=a0+a1t+...+antn, where the coefficients...Ch. 4.6 - Prob. 40ECh. 4.6 - A real symmetric (nn) matrix A is called positive...Ch. 4.6 - An (nn) matrix A is called unitary if A*A=I. If A...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 19 and 20, find values ,,a,bandc such...Ch. 4.7 - In Exercises 19 and 20, find values ,,a,bandc such...Ch. 4.7 - Let A be an (nn) matrix, and let S be a...Ch. 4.7 - Show that if A is diagonalizable and if B is...Ch. 4.7 - Suppose that B is similar to A. Show each of the...Ch. 4.7 - Prove properties b and c of Theorem 21. Hint: For...Ch. 4.7 - Let u be a vector in Rn such that uTu=1. Let...Ch. 4.7 - Suppose that A and B are orthogonal (nn) matrices....Ch. 4.7 - Prob. 31ECh. 4.7 - Prob. 32ECh. 4.7 - Prob. 33ECh. 4.7 - Prob. 34ECh. 4.7 - Prob. 35ECh. 4.7 - Prob. 36ECh. 4.7 - Prob. 37ECh. 4.7 - Prob. 38ECh. 4.7 - Let B=QTAQ, where q and A are as in Exercise 38....Ch. 4.7 - Prob. 40ECh. 4.7 - Following the outline of Exercises 38-40, use...Ch. 4.7 - Consider the (nn) symmetric matrix A=(aij) defined...Ch. 4.7 - Suppose that A is a real symmetric matrix and that...Ch. 4.8 - In Exercises 1-6, consider the vector sequence...Ch. 4.8 - Prob. 2ECh. 4.8 - In Exercises 1-6, consider the vector sequence...Ch. 4.8 - Prob. 4ECh. 4.8 - In Exercises 1-6, consider the vector sequence...Ch. 4.8 - Prob. 6ECh. 4.8 - In Exercises 7-14, let xk=Axk1, k=1,2,....... for...Ch. 4.8 - Prob. 8ECh. 4.8 - In Exercises 7-14, let xk=Axk1, k=1,2,....... for...Ch. 4.8 - Prob. 10ECh. 4.8 - In Exercises 7-14, let xk=Axk1, k=1,2,, for the...Ch. 4.8 - Prob. 12ECh. 4.8 - Prob. 13ECh. 4.8 - Prob. 14ECh. 4.8 - Prob. 15ECh. 4.8 - In Exercises 15-18, solve the initial-value...Ch. 4.8 - Prob. 17ECh. 4.8 - Prob. 18ECh. 4.8 - Prob. 19ECh. 4.8 - Prob. 20ECh. 4.8 - Prob. 21ECh. 4.8 - Prob. 22ECh. 4.8 - Prob. 23ECh. 4.8 - Prob. 24ECh. 4.8 - Prob. 25ECh. 4.8 - Prob. 26ECh. 4.8 - Prob. 27ECh. 4.8 - Prob. 28ECh. 4.8 - Prob. 29ECh. 4.SE - Prob. 1SECh. 4.SE - Prob. 2SECh. 4.SE - Prob. 3SECh. 4.SE - Prob. 4SECh. 4.SE - Prob. 5SECh. 4.SE - Prob. 6SECh. 4.SE - Prob. 7SECh. 4.SE - Prob. 8SECh. 4.SE - Prob. 9SECh. 4.SE - Prob. 10SECh. 4.SE - Prob. 11SECh. 4.SE - Prob. 12SECh. 4.SE - Prob. 13SECh. 4.SE - Prob. 14SECh. 4.CE - CONCEPTUAL EXERCISES In Exercises 18, answer true...Ch. 4.CE - Prob. 2CECh. 4.CE - CONCEPTUAL EXERCISES In Exercises 18, answer true...Ch. 4.CE - Prob. 4CECh. 4.CE - Prob. 5CECh. 4.CE - Prob. 6CECh. 4.CE - Prob. 7CECh. 4.CE - CONCEPTUAL EXERCISES In Exercises 18, answer true...Ch. 4.CE - Prob. 9CECh. 4.CE - In Exercises 9-14, give a brief answer. Suppose...Ch. 4.CE - In Exercises 9-14, give a brief answer. Show that...Ch. 4.CE - In Exercises 9-14, give a brief answer. Let A and...Ch. 4.CE - Prob. 13CECh. 4.CE - In Exercises 9-14, give a brief answer. Let u be a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- What is the vertex, axis of symmerty, all of the solutions, all of the end behaviors, the increasing interval, the decreasing interval, describe all of the transformations that have occurred EXAMPLE Vertical shrink/compression (wider). or Vertical translation down, the domain and range of this graph EXAMPLE Domain: x ≤ -1 Range: y ≥ -4.arrow_forward4. Select all of the solutions for x²+x - 12 = 0? A. -12 B. -4 C. -3 D. 3 E 4 F 12 4 of 10arrow_forward2. Select all of the polynomials with the degree of 7. A. h(x) = (4x + 2)³(x − 7)(3x + 1)4 B h(x) = (x + 7)³(2x + 1)^(6x − 5)² ☐ Ch(x)=(3x² + 9)(x + 4)(8x + 2)ª h(x) = (x + 6)²(9x + 2) (x − 3) h(x)=(-x-7)² (x + 8)²(7x + 4)³ Scroll down to see more 2 of 10arrow_forward
- 1. If all of the zeros for a polynomial are included in the graph, which polynomial could the graph represent? 100 -6 -2 0 2 100 200arrow_forward3. Select the polynomial that matches the description given: Zero at 4 with multiplicity 3 Zero at −1 with multiplicity 2 Zero at -10 with multiplicity 1 Zero at 5 with multiplicity 5 ○ A. P(x) = (x − 4)³(x + 1)²(x + 10)(x — 5)³ B - P(x) = (x + 4)³(x − 1)²(x − 10)(x + 5)³ ○ ° P(x) = (1 − 3)'(x + 2)(x + 1)"'" (x — 5)³ 51 P(r) = (x-4)³(x − 1)(x + 10)(x − 5 3 of 10arrow_forwardMatch the equation, graph, and description of transformation. Horizontal translation 1 unit right; vertical translation 1 unit up; vertical shrink of 1/2; reflection across the x axis Horizontal translation 1 unit left; vertical translation 1 unit down; vertical stretch of 2 Horizontal translation 2 units right; reflection across the x-axis Vertical translation 1 unit up; vertical stretch of 2; reflection across the x-axis Reflection across the x - axis; vertical translation 2 units down Horizontal translation 2 units left Horizontal translation 2 units right Vertical translation 1 unit down; vertical shrink of 1/2; reflection across the x-axis Vertical translation 2 units down Horizontal translation 1 unit left; vertical translation 2 units up; vertical stretch of 2; reflection across the x - axis f(x) = - =-½ ½ (x − 1)²+1 f(x) = x²-2 f(x) = -2(x+1)²+2 f(x)=2(x+1)²-1 f(x)=-(x-2)² f(x)=(x-2)² f(x) = f(x) = -2x²+1 f(x) = -x²-2 f(x) = (x+2)²arrow_forward
- What is the vertex, increasing interval, decreasing interval, domain, range, root/solution/zero, and the end behavior?arrow_forwardThe augmented matrix of a linear system has been reduced by row operations to the form shown. Continue the appropriate row operations and describe the solution set of the original system. 1 -1 0 1 -2 00-4 0-6 0 0 1 - 3 3 0 001 4arrow_forwardSolve the system. X1 - 3x3 = 10 4x1 + 2x2 + 3x3 = 22 ×2 + 4x3 = -2arrow_forward
- Use the quadratic formula to find the zeros of the quadratic equation. Y=3x^2+48x+180arrow_forwardM = log The formula determines the magnitude of an earthquake, where / is the intensity of the earthquake and S is the intensity of a "standard earthquake." How many times stronger is an earthquake with a magnitude of 8 than an earthquake with a magnitude of 6? Show your work.arrow_forwardNow consider equations of the form ×-a=v = √bx + c, where a, b, and c are all positive integers and b>1. (f) Create an equation of this form that has 7 as a solution and an extraneous solution. Give the extraneous solution. (g) What must be true about the value of bx + c to ensure that there is a real number solution to the equation? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY