
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
5th Edition
ISBN: 9780134689531
Author: Lee Johnson, Dean Riess, Jimmy Arnold
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.6, Problem 33E
To determine
To Find:
The eigenvalue and eigenvectors of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Here is an augmented matrix for a system of equations (three equations and three variables). Let the
variables used be x, y, and z:
1 2 4 6
0 1
-1
3
0
0
1
4
Note: that this matrix is already in row echelon form.
Your goal is to use this row echelon form to revert back to the equations that this represents, and then to
ultimately solve the system of equations by finding x, y and z.
Input your answer as a coordinate point: (x,y,z) with no spaces.
1
3 -4
In the following matrix
perform the operation 2R1 + R2 → R2.
-2 -1
6
After you have completed this, what numeric value is in the a22 position?
5
-2
0
1
6 12
Let A
=
6
7
-1
and B =
1/2 3 -14
-2 0
4
4
4
0
Compute -3A+2B and call the resulting matrix R.
If rij represent the individual entries in the matrix R, what numeric value is in 131?
Input your answer as a numeric value only.
Chapter 4 Solutions
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...
Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - In Exercises 1-12, find the eigenvalues and the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Using Eq.4, apply the singularity test to the...Ch. 4.1 - Consider the (22) symmetric matrix A=[abbd]. Show...Ch. 4.1 - Consider the (22) matrix A given by A=[abba],b0....Ch. 4.1 - Let A be a (22) matrix. Show that A and AT have...Ch. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - Prob. 3ECh. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - Prob. 5ECh. 4.2 - In Exercises 1-6, list the minor matrix Mij, and...Ch. 4.2 - Prob. 7ECh. 4.2 - Prob. 8ECh. 4.2 - Prob. 9ECh. 4.2 - Prob. 10ECh. 4.2 - Prob. 11ECh. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - Prob. 13ECh. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - Prob. 17ECh. 4.2 - In Exercises 8-19, calculate the determinant of...Ch. 4.2 - Prob. 19ECh. 4.2 - Let A=(aij) be a given (33) matrix. Form the...Ch. 4.2 - In Exercises 21 and 22, find all ordered pairs...Ch. 4.2 - In Exercises 21 and 22, find all ordered pairs...Ch. 4.2 - Let A=(aij) be the (nn) matrix specified thus:...Ch. 4.2 - Let A and B be (nn) matrices. Use Theorems 2 and 3...Ch. 4.2 - Suppose that A is a (nn) nonsingular matrix, and...Ch. 4.2 - Prob. 26ECh. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - In Exercises 27-30, use Theorem 2 and Exercise 25...Ch. 4.2 - a Let A be an (nn) matrix. If n=3, det(A) can be...Ch. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Prob. 34ECh. 4.3 - In Exercise 1-6, evaluate det(A) by using row...Ch. 4.3 - In Exercise 1-6, evaluate det(A) by using row...Ch. 4.3 - Prob. 3ECh. 4.3 - In Exercise 1-6, evaluate det(A) by using row...Ch. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - In Exercise 7-12, use only column interchanges or...Ch. 4.3 - Prob. 9ECh. 4.3 - In Exercise 7-12, use only column interchanges or...Ch. 4.3 - In Exercise 7-12, use only column interchanges or...Ch. 4.3 - Prob. 12ECh. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - In Exercise 13-18, assume that the (33) matrix A...Ch. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 19-22, evaluate the (44) determinants....Ch. 4.3 - In Exercise 23 and 24, use row operations to...Ch. 4.3 - In Exercise 23 and 24, use row operations to...Ch. 4.3 - Let A be a (nn) matrix. Use Theorem 7 to argue...Ch. 4.3 - Prove the corollary to Theorem 6. Hint: Suppose...Ch. 4.3 - Find examples of (22) matrices A and B such that...Ch. 4.3 - An (nn) matrix A is called skew symmetric if AT=A....Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - In Exercises 1 14, find the characteristic...Ch. 4.4 - Prove property b of theorem 11. Hint: Begin with...Ch. 4.4 - Prove property c of Theorem 11. Theorem 11 Let A...Ch. 4.4 - Complete the proof of property a of Theorem 11....Ch. 4.4 - Let qt=t3-2t2-t+2; and for any nn matrix H, define...Ch. 4.4 - With qt as in Exercise 18, verify that qC is the...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - Exercises 20 23 illustrate the Cayley-Hamilton...Ch. 4.4 - This problem establishes a special case of the...Ch. 4.4 - Consider the 22 matrix A given by A=abcd. The...Ch. 4.4 - Prob. 26ECh. 4.4 - Let qt=tn+an-1tn-1++a1t+a0, and define the nn...Ch. 4.4 - Prob. 28ECh. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Prob. 31ECh. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - The following list of matrices and their...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - In Exercise 12-17, find the eigenvalues and the...Ch. 4.5 - If a vector x is a linear combination of...Ch. 4.5 - As in Exercise 18, calculate A10x for...Ch. 4.5 - Consider a (44) matrix H of the form...Ch. 4.5 - An (nn) matrix P is called idempotent if P2=P....Ch. 4.5 - Let P be an idempotent matrix. Show that the only...Ch. 4.5 - Let u be a vector in Rn such that uTu=1. Show that...Ch. 4.5 - Verify that if Q is idempotent, then so is IQ....Ch. 4.5 - Suppose that u and v are vectors in Rn such that...Ch. 4.5 - Show that any nonzero vector of the form au+bv is...Ch. 4.5 - Prob. 27ECh. 4.5 - Let A be a symmetric matrix and suppose that Au=u,...Ch. 4.5 - Prob. 29ECh. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - Prob. 2ECh. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - In Exercises 1-18, s=1+2i,u=32i,v=4+i,w=2i, and...Ch. 4.6 - Prob. 18ECh. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - Find the eigenvalues and the eigenvectors for the...Ch. 4.6 - In Exercises 25 and 26, solve the linear system....Ch. 4.6 - In Exercises 25 and 26, solve the linear system....Ch. 4.6 - In Exercises 27-30, calculate x. x=[1+i2]Ch. 4.6 - In Exercises 27-30, calculate x. x=[3+i2i]Ch. 4.6 - In Exercises 27-30, calculate x. x=[12ii3+i]Ch. 4.6 - In Exercises 27-30, calculate x. x=[2i1i3]Ch. 4.6 - Prob. 31ECh. 4.6 - In Exercises 31-34, use linear algebra software to...Ch. 4.6 - Prob. 33ECh. 4.6 - Prob. 34ECh. 4.6 - Establish the five properties of the conjugate...Ch. 4.6 - Let A be an (mn) matrix, and let B be an (np)...Ch. 4.6 - Prob. 37ECh. 4.6 - An (nn) matrix A is called Hermitian if A*=A....Ch. 4.6 - Let p(t)=a0+a1t+...+antn, where the coefficients...Ch. 4.6 - Prob. 40ECh. 4.6 - A real symmetric (nn) matrix A is called positive...Ch. 4.6 - An (nn) matrix A is called unitary if A*A=I. If A...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 1 12, determine whether the given...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 13 18, use condition 5 to determine...Ch. 4.7 - In Exercises 19 and 20, find values ,,a,bandc such...Ch. 4.7 - In Exercises 19 and 20, find values ,,a,bandc such...Ch. 4.7 - Let A be an (nn) matrix, and let S be a...Ch. 4.7 - Show that if A is diagonalizable and if B is...Ch. 4.7 - Suppose that B is similar to A. Show each of the...Ch. 4.7 - Prove properties b and c of Theorem 21. Hint: For...Ch. 4.7 - Let u be a vector in Rn such that uTu=1. Let...Ch. 4.7 - Suppose that A and B are orthogonal (nn) matrices....Ch. 4.7 - Prob. 31ECh. 4.7 - Prob. 32ECh. 4.7 - Prob. 33ECh. 4.7 - Prob. 34ECh. 4.7 - Prob. 35ECh. 4.7 - Prob. 36ECh. 4.7 - Prob. 37ECh. 4.7 - Prob. 38ECh. 4.7 - Let B=QTAQ, where q and A are as in Exercise 38....Ch. 4.7 - Prob. 40ECh. 4.7 - Following the outline of Exercises 38-40, use...Ch. 4.7 - Consider the (nn) symmetric matrix A=(aij) defined...Ch. 4.7 - Suppose that A is a real symmetric matrix and that...Ch. 4.8 - In Exercises 1-6, consider the vector sequence...Ch. 4.8 - Prob. 2ECh. 4.8 - In Exercises 1-6, consider the vector sequence...Ch. 4.8 - Prob. 4ECh. 4.8 - In Exercises 1-6, consider the vector sequence...Ch. 4.8 - Prob. 6ECh. 4.8 - In Exercises 7-14, let xk=Axk1, k=1,2,....... for...Ch. 4.8 - Prob. 8ECh. 4.8 - In Exercises 7-14, let xk=Axk1, k=1,2,....... for...Ch. 4.8 - Prob. 10ECh. 4.8 - In Exercises 7-14, let xk=Axk1, k=1,2,, for the...Ch. 4.8 - Prob. 12ECh. 4.8 - Prob. 13ECh. 4.8 - Prob. 14ECh. 4.8 - Prob. 15ECh. 4.8 - In Exercises 15-18, solve the initial-value...Ch. 4.8 - Prob. 17ECh. 4.8 - Prob. 18ECh. 4.8 - Prob. 19ECh. 4.8 - Prob. 20ECh. 4.8 - Prob. 21ECh. 4.8 - Prob. 22ECh. 4.8 - Prob. 23ECh. 4.8 - Prob. 24ECh. 4.8 - Prob. 25ECh. 4.8 - Prob. 26ECh. 4.8 - Prob. 27ECh. 4.8 - Prob. 28ECh. 4.8 - Prob. 29ECh. 4.SE - Prob. 1SECh. 4.SE - Prob. 2SECh. 4.SE - Prob. 3SECh. 4.SE - Prob. 4SECh. 4.SE - Prob. 5SECh. 4.SE - Prob. 6SECh. 4.SE - Prob. 7SECh. 4.SE - Prob. 8SECh. 4.SE - Prob. 9SECh. 4.SE - Prob. 10SECh. 4.SE - Prob. 11SECh. 4.SE - Prob. 12SECh. 4.SE - Prob. 13SECh. 4.SE - Prob. 14SECh. 4.CE - CONCEPTUAL EXERCISES In Exercises 18, answer true...Ch. 4.CE - Prob. 2CECh. 4.CE - CONCEPTUAL EXERCISES In Exercises 18, answer true...Ch. 4.CE - Prob. 4CECh. 4.CE - Prob. 5CECh. 4.CE - Prob. 6CECh. 4.CE - Prob. 7CECh. 4.CE - CONCEPTUAL EXERCISES In Exercises 18, answer true...Ch. 4.CE - Prob. 9CECh. 4.CE - In Exercises 9-14, give a brief answer. Suppose...Ch. 4.CE - In Exercises 9-14, give a brief answer. Show that...Ch. 4.CE - In Exercises 9-14, give a brief answer. Let A and...Ch. 4.CE - Prob. 13CECh. 4.CE - In Exercises 9-14, give a brief answer. Let u be a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 1 -2 4 10 My goal is to put the matrix 5 -1 1 0 into row echelon form using Gaussian elimination. 3 -2 6 9 My next step is to manipulate this matrix using elementary row operations to get a 0 in the a21 position. Which of the following operations would be the appropriate elementary row operation to use to get a 0 in the a21 position? O (1/5)*R2 --> R2 ○ 2R1 + R2 --> R2 ○ 5R1+ R2 --> R2 O-5R1 + R2 --> R2arrow_forwardThe 2x2 linear system of equations -2x+4y = 8 and 4x-3y = 9 was put into the following -2 4 8 augmented matrix: 4 -3 9 This augmented matrix is then converted to row echelon form. Which of the following matrices is the appropriate row echelon form for the given augmented matrix? 0 Option 1: 1 11 -2 Option 2: 4 -3 9 Option 3: 10 ܂ -2 -4 5 25 1 -2 -4 Option 4: 0 1 5 1 -2 Option 5: 0 0 20 -4 5 ○ Option 1 is the appropriate row echelon form. ○ Option 2 is the appropriate row echelon form. ○ Option 3 is the appropriate row echelon form. ○ Option 4 is the appropriate row echelon form. ○ Option 5 is the appropriate row echelon form.arrow_forwardLet matrix A have order (dimension) 2x4 and let matrix B have order (dimension) 4x4. What results when you compute A+B? The resulting matrix will have dimensions of 2x4. ○ The resulting matrix will be a single number (scalar). The resulting matrix will have dimensions of 4x4. A+B is undefined since matrix A and B do not have the same dimensions.arrow_forward
- If -1 "[a446]-[254] 4b = -1 , find the values of a and b. ○ There is no solution for a and b. ○ There are infinite solutions for a and b. O a=3, b=3 O a=1, b=2 O a=2, b=1 O a=2, b=2arrow_forwardA student puts a 3x3 system of linear equations is into an augmented matrix. The student then correctly puts the augmented matrix into row echelon form (REF), which yields the following resultant matrix: -2 3 -0.5 10 0 0 0 -2 0 1 -4 Which of the following conclusions is mathematically supported by the work shown about system of linear equations? The 3x3 system of linear equations has no solution. ○ The 3x3 system of linear equations has infinite solutions. The 3x3 system of linear equations has one unique solution.arrow_forwardSolve the following system of equations using matrices: -2x + 4y = 8 and 4x - 3y = 9 Note: This is the same system of equations referenced in Question 14. If a single solution exists, express your solution as an (x,y) coordinate point with no spaces. If there are infinite solutions write inf and if there are no solutions write ns in the box.arrow_forward
- Consider the table of values below. x y 2 63 3 70 4 77 5 84 Fill in the right side of the equation y= with an expression that makes each ordered pari (x,y) in the table a solution to the equation.arrow_forwardThere were 426 books sold in one week. The number of biology books sold was 5 times that of the number of psychology books. How many books each were sold?arrow_forwardPopulation decreases 5% each year. Starts with a starting population of 3705. Find that population after 5 years.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY