For the following exercises, set up and evaluate each optimization problem. 315. To carry a suitcase on an airplane, the length +width + height of the box must be less than or equal to 62 in. Assuming the height is fixed, show that the maximum volume is V = h ( 31 − ( 1 2 ) h ) 2 . What height allows you to have the largest volume?
For the following exercises, set up and evaluate each optimization problem. 315. To carry a suitcase on an airplane, the length +width + height of the box must be less than or equal to 62 in. Assuming the height is fixed, show that the maximum volume is V = h ( 31 − ( 1 2 ) h ) 2 . What height allows you to have the largest volume?
For the following exercises, set up and evaluate each optimization problem.
315. To carry a suitcase on an airplane, the length +width + height of the box must be less than or equal to 62 in. Assuming the height is fixed, show that the maximum volume is
V
=
h
(
31
−
(
1
2
)
h
)
2
. What height allows you to have the largest volume?
43
University
at Buffalo
Previous Problem
Problem List
Next Problem
At least one of the answers above is NOT correct.
The figure shows a hill with two paths, A and B.
(a) What is the elevation change along each path? 400
9400
✓ feet
(b) Which path ascends more rapidly? A v
(c) On which path will you probably have a better view of the surrounding
countryside (assuming that trees do not block your view)? A V
(d) Along which path is there more likely to be a stream?
A V
Note: You can earn 50% partial credit for 2-3 correct answers.
Preview My Answers
Submit Answers
Q
hulu
))))
9800'
A
10000
(Click on graph to enlarge)
L
^
B
0
Logged in as Luella Ya
4)
28. (a) Under what conditions do we say that two random variables X and Y are
independent?
(b) Demonstrate that if X and Y are independent, then it follows that E(XY) =
E(X)E(Y);
(e) Show by a counter example that the converse of (ii) is not necessarily true.
7. [10 marks]
Let G = (V,E) be a 3-connected graph with at least 6 vertices. Let C be a cycle in G
of length 5. We show how to find a longer cycle in G.
(a) Let x be a vertex of G that is not on C. Show that there are three C-paths
Po, P1, P2 that are disjoint except at the shared initial vertex and only intersect
C at their final vertices.
(b) Show that at least two of P0, P1, P2 have final vertices that are adjacent along C.
(c) Combine two of Po, P1, P2 with C to produce a cycle in G that is longer than C.
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.