Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 46, Problem 61AP
(a)
To determine
The process describes in the Feynman diagrams.
(b)
To determine
The exchanged particle in each process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) What processes are described by the Feynman diagrams as shown? (b) What is the exchanged particle in each process?
The range of the nuclear strong force is believed to be about 1.2 x 10-15 m. An early theory of nuclear physics proposed that the particle that “mediates” the strong force (similar to the photon mediating the electromagnetic force) is the pion. Assume that the pion moves at the speed of light in the nucleus, and calculate the time ∆t it takes to travel between nucleons. Assume that the distance between nucleons is also about 1.2 x 10-15 m. Use this time ∆t to calculate the energy ∆E for which energy conservation is violated during the time ∆t. This ∆E has been used to estimate the mass of the pion. What value do you determine for the mass? Compare this value with the measured value of 135 MeV/c2 for the neutral pion.
Most of the particles known to physicists are unstable. For example, the lifetime of the neutral pion,π0, is about 8.4x10-17 s. Its mass is 135.0 MeV/c2. a) What is the energy width of the π0 in its ground state? b) What is the relative uncertainty ∆m/m of the pion’s mass?
Chapter 46 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 46.2 - Prob. 46.1QQCh. 46.5 - Prob. 46.3QQCh. 46.5 - Prob. 46.4QQCh. 46.8 - Prob. 46.5QQCh. 46.8 - Prob. 46.6QQCh. 46 - Prob. 1OQCh. 46 - Prob. 2OQCh. 46 - Prob. 3OQCh. 46 - Prob. 4OQCh. 46 - Prob. 5OQ
Ch. 46 - Prob. 6OQCh. 46 - Prob. 7OQCh. 46 - Prob. 8OQCh. 46 - Prob. 1CQCh. 46 - Prob. 2CQCh. 46 - Prob. 3CQCh. 46 - Prob. 4CQCh. 46 - Prob. 5CQCh. 46 - Prob. 6CQCh. 46 - Prob. 7CQCh. 46 - Prob. 8CQCh. 46 - Prob. 9CQCh. 46 - Prob. 10CQCh. 46 - Prob. 11CQCh. 46 - Prob. 12CQCh. 46 - Prob. 13CQCh. 46 - Prob. 1PCh. 46 - Prob. 2PCh. 46 - Prob. 3PCh. 46 - Prob. 4PCh. 46 - Prob. 5PCh. 46 - Prob. 6PCh. 46 - Prob. 7PCh. 46 - Prob. 8PCh. 46 - Prob. 9PCh. 46 - Prob. 10PCh. 46 - Prob. 11PCh. 46 - Prob. 12PCh. 46 - Prob. 13PCh. 46 - Prob. 14PCh. 46 - Prob. 15PCh. 46 - Prob. 16PCh. 46 - Prob. 17PCh. 46 - Prob. 18PCh. 46 - Prob. 19PCh. 46 - Prob. 20PCh. 46 - Prob. 21PCh. 46 - Prob. 22PCh. 46 - Prob. 23PCh. 46 - Prob. 24PCh. 46 - Prob. 25PCh. 46 - Prob. 26PCh. 46 - Prob. 27PCh. 46 - Prob. 28PCh. 46 - Prob. 29PCh. 46 - Prob. 30PCh. 46 - Prob. 31PCh. 46 - Prob. 32PCh. 46 - Prob. 33PCh. 46 - Prob. 34PCh. 46 - Prob. 35PCh. 46 - Prob. 36PCh. 46 - Prob. 37PCh. 46 - Prob. 38PCh. 46 - Prob. 39PCh. 46 - Prob. 40PCh. 46 - Prob. 41PCh. 46 - Prob. 42PCh. 46 - Prob. 43PCh. 46 - Prob. 44PCh. 46 - The various spectral lines observed in the light...Ch. 46 - Prob. 47PCh. 46 - Prob. 48PCh. 46 - Prob. 49PCh. 46 - Prob. 50PCh. 46 - Prob. 51APCh. 46 - Prob. 52APCh. 46 - Prob. 53APCh. 46 - Prob. 54APCh. 46 - Prob. 55APCh. 46 - Prob. 56APCh. 46 - Prob. 57APCh. 46 - Prob. 58APCh. 46 - An unstable particle, initially at rest, decays...Ch. 46 - Prob. 60APCh. 46 - Prob. 61APCh. 46 - Prob. 62APCh. 46 - Prob. 63APCh. 46 - Prob. 64APCh. 46 - Prob. 65APCh. 46 - Prob. 66APCh. 46 - Prob. 67CPCh. 46 - Prob. 68CPCh. 46 - Prob. 69CPCh. 46 - Prob. 70CPCh. 46 - Prob. 71CPCh. 46 - Prob. 72CPCh. 46 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Estimate the mass of the luminous matter in the known universe, given there are 1011 galaxies, each containing 1011 stars of average mass 1.5 times that of our Sun. (b) How many protons (the most abundant nuclide) are there in this mates? (c) Estimate the total number of particles in the observable universe by multiplying the answer to (b) by two, since there is an electron for each proton, and then by 109, since there are far more particles (such as photons and neutrinos) in space than in luminous matter.arrow_forwardThe f meson has mass 1019.4 MeV/c2 and a measured energy width of 4.4 MeV/c2 . Using the uncertainty principle, estimate the lifetime of the f meson.arrow_forwardIs it possible that some parts of the universe contain antimatter whose atoms have nuclei made of antiprotons and antineutrons, surrounded by positrons? How could we detect this condition without actually going there? Can we detect these antiatoms by identifying the light they emit as composed of antiphotons? Explain. What problems might arise if we actually did go there?arrow_forward
- An electrically neutral pion (º) can be created in a collision between two protons. (The protons still exist after the interaction.) Thus the reaction is p+р-->p+p+⁰° The proton rest energy is 938 MeV, and the pion rest energy is 140 MeV. Imagine that you are designing an accelerator, and you want to make sure that it has sufficient energy to produce a . (a) If the accelerator shoots a beam of protons onto a stationary proton target, what is the minimum (threshold) kinetic energy per proton? (b) If the accelerator has two colliding beams of protons (both with the same energy), then what is the minimum (threshold) kinetic energy per proton?arrow_forward9. Which of the following reactions and decays are possible? For those forbidden, explain what laws are violated? (а) п- +р+п + п?. (b) a+ +p → n+ 7º. (c) n+ +p→p+ e+. (d) p→ e+ + ve. (e) p→n + e+ + Ve- 10. Draw the two Feynman diagrams for electron-electron scattering at the first-order. Draw three distinct second-order diagrams.arrow_forwarda) A K° meson (mass 497.61 MeV/c2) decays to a t, T pair with a mean lifetime of 0.89 x 10-10 s. Suppose the K° has a kinetic energy of 276 MeV when it decays, and that the two A mesons emerge at equal angles to the original K° direction. Calculate the kinetic energy of each T meson and the opening angle between them. The mass of a 7 meson is 139.57 MeV/c2.arrow_forward
- A linear accelerator designed to produce a beam of 800-MeV protons has 2000 accelerating tubes. What average voltage must be applied between tubes (such as in the gaps in Figure 33.9) to achieve the desired energy?arrow_forwardFind this lifetime.arrow_forwardYou are working as an assistant for a physics professor. For an upcoming lecture, your professor asks you to prepare a presentation slide with the following two proposed reactions which might proceed via the strong interaction:(i) π- + p → K0 +Λ0(ii) π- + p → K0 + nOn the slide, the professor wishes for you to show the quark analysis of the reactions, and (a) identify which reaction is observed, and (b) explain why the other is not observed.arrow_forward
- Edwin Hubble observed that the light from very distant galaxies was redshifted and that the farther away a galaxy was, the greater its redshift. What does this say about very distant galaxies? When Hubble first estimated the Hubble constant, galaxy distances were still very uncertain, and he got a value for H of about 600 km/s per Mpc. What would this have implied about the age of the universe? What problems would this have presented for cosmologists?arrow_forwardthe baryon number p + p → 2y. Determine (b) the baryon number and (c) the electron-lepton number of the reaction N → A° + K¯. Determine of the reactionarrow_forwardSuppose that a muon neutrino and a muon antineutrino, both of which are just barely moving, encounter each other in space and completely annihilate to form two photons of equal energy. In view of the uncertainty about the mass of the muon neutrino (< 0.180 MeV/c²), what is the shortest wavelength Ao of light that could be emitted by the annihilation? Would the light be visible to the human eye? yes O no λο = marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning