For Exercises 11-16, identify the statements among a-h that follow directly from the given condition about x . a. csc x is undefined. b. sec x is undefined. c. The graph of y = sec x has a relative maximum at x . d. The graph of y = csc x has a relative minimum at x . e. The graph of y = sec x has a vertical asymptote. f. The graph of y = csc x has a vertical asymptote. g. The graph of y = csc x has a relative maximum at x . h. The graph of y = sec x has a relative minimum at x . cos x = 0
For Exercises 11-16, identify the statements among a-h that follow directly from the given condition about x . a. csc x is undefined. b. sec x is undefined. c. The graph of y = sec x has a relative maximum at x . d. The graph of y = csc x has a relative minimum at x . e. The graph of y = sec x has a vertical asymptote. f. The graph of y = csc x has a vertical asymptote. g. The graph of y = csc x has a relative maximum at x . h. The graph of y = sec x has a relative minimum at x . cos x = 0
Solution Summary: The author explains that the graph of the function y=mathrmsecx suggests that at the values of
For Exercises 11-16, identify the statements among
a-h
that follow directly from the given condition about
x
.
a.
csc
x
is undefined.
b.
sec
x
is undefined.
c. The graph of
y
=
sec
x
has a relative maximum at
x
.
d. The graph of
y
=
csc
x
has a relative minimum at
x
.
e. The graph of
y
=
sec
x
has a vertical asymptote.
f. The graph of
y
=
csc
x
has a vertical asymptote.
g. The graph of
y
=
csc
x
has a relative maximum at
x
.
h. The graph of
y
=
sec
x
has a relative minimum at
x
.
cos
x
=
0
Formula Formula A function f(x) attains a local maximum at x=a , if there exists a neighborhood (a−δ,a+δ) of a such that, f(x)<f(a), ∀ x∈(a−δ,a+δ),x≠a f(x)−f(a)<0, ∀ x∈(a−δ,a+δ),x≠a In such case, f(a) attains a local maximum value f(x) at x=a .
The correct answer is C,i know that we need to use stokes theorem and parametrize the equations then write the equation F with respect to the curve but i cant seem to find a way to do it, the integral should be from 0 to 2pi but i might be wrongcould you show me the steps to get to 18pi
A 10-ft boom is acted upon by the 810-lb force as shown in the figure.
D
6 ft
6 ft
E
B
7 ft
C
6 ft
4 ft
W
Determine the tension in each cable and the reaction at the ball-and-socket joint at A.
The tension in cable BD is
lb.
The tension in cable BE is
lb.
The reaction at A is (
lb) i +
Ib) j. (Include a minus sign if necessary.)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.