Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 45, Problem 6CQ
To determine
The source of excitation energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino.
The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance
x would a beam of 3.14-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value?
Ignore relativistic effects.
X =
nucleus emits an alpha particle with kinetic evergy = 4.20 MeV. What is the daughter nucleus, and what is the approximate atomic mass (in u) of the daughter atom? ignore recoil of the daughter nucleus.
if the image doesnt come up properly it is 92^238 U
The figure provided shows the potential energy of a proton, q = +e, and a lead nucleus, q = +82e. If a proton is fired toward a lead nucleus from very far away with kinetic energy K = 3.00×10-12 J, how much kinetic energy does it have when it is 20.0 fm from the nucleus and moving toward it, before the collision?
5.00×10-12 J 4.00×10-12 J 3.00×10-12 J 2.00×10-12 J
Chapter 45 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 45.1 - When a nucleus undergoes fission, the two daughter...Ch. 45.2 - Prob. 45.2QQCh. 45.3 - Prob. 45.3QQCh. 45.4 - Prob. 45.4QQCh. 45 - Prob. 1OQCh. 45 - Prob. 2OQCh. 45 - Prob. 3OQCh. 45 - Prob. 4OQCh. 45 - Prob. 5OQCh. 45 - Prob. 6OQ
Ch. 45 - Prob. 7OQCh. 45 - Prob. 8OQCh. 45 - Prob. 9OQCh. 45 - Prob. 1CQCh. 45 - Prob. 2CQCh. 45 - Prob. 3CQCh. 45 - Prob. 4CQCh. 45 - Prob. 5CQCh. 45 - Prob. 6CQCh. 45 - Prob. 7CQCh. 45 - Prob. 8CQCh. 45 - Prob. 1PCh. 45 - Prob. 2PCh. 45 - Prob. 3PCh. 45 - Prob. 4PCh. 45 - Prob. 5PCh. 45 - Prob. 6PCh. 45 - Prob. 7PCh. 45 - Prob. 8PCh. 45 - Prob. 9PCh. 45 - Prob. 10PCh. 45 - Prob. 11PCh. 45 - Prob. 12PCh. 45 - Prob. 13PCh. 45 - Prob. 14PCh. 45 - Prob. 15PCh. 45 - Prob. 16PCh. 45 - Prob. 18PCh. 45 - Prob. 19PCh. 45 - Prob. 20PCh. 45 - Prob. 21PCh. 45 - Prob. 22PCh. 45 - Prob. 23PCh. 45 - Prob. 24PCh. 45 - Prob. 25PCh. 45 - Prob. 26PCh. 45 - Prob. 27PCh. 45 - Prob. 28PCh. 45 - Prob. 29PCh. 45 - Prob. 30PCh. 45 - Prob. 31PCh. 45 - Prob. 32PCh. 45 - Prob. 33PCh. 45 - Prob. 34PCh. 45 - Prob. 35PCh. 45 - Prob. 36PCh. 45 - Prob. 37PCh. 45 - Prob. 41PCh. 45 - Prob. 42PCh. 45 - Prob. 43PCh. 45 - Prob. 44PCh. 45 - Prob. 45PCh. 45 - Prob. 46APCh. 45 - Prob. 47APCh. 45 - Prob. 48APCh. 45 - Prob. 49APCh. 45 - Prob. 51APCh. 45 - Prob. 52APCh. 45 - Prob. 53APCh. 45 - Prob. 54APCh. 45 - Prob. 55APCh. 45 - Prob. 56APCh. 45 - Prob. 57APCh. 45 - Prob. 58APCh. 45 - Prob. 59APCh. 45 - Prob. 60APCh. 45 - Prob. 61APCh. 45 - Prob. 62APCh. 45 - Prob. 63APCh. 45 - Prob. 64APCh. 45 - Prob. 65APCh. 45 - Prob. 66APCh. 45 - Prob. 67APCh. 45 - Prob. 68APCh. 45 - Prob. 69APCh. 45 - Prob. 70APCh. 45 - Prob. 71APCh. 45 - Prob. 72APCh. 45 - Prob. 73AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of 235U is fissioned in one year of fullpower operation?arrow_forward(a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardThe electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical power. What is the thermal nuclear power output in megawatts? How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? What mass of 235U is fissioned in 1 year of full-power operation?arrow_forward
- Unreasonable Results A frazzled theoretical physicist reckons that all conservation laws are obeyed in the decay of a proton into a neutron, positron, and neutrino (as in (+ decay of a nucleus) and sends a paper to a journal to announce the reaction as a possible end of the universe due to the spontaneous decay of protons. (a) What energy is released in this decay? (b) What is unreasonable about this result? (c) What assumption is responsible?arrow_forwardA nucleus of 241Pu captures a thermal neutron to form a nucleus of 242Pu. What is the excitation energy for this process? Select one: a. 5.1 MeV b. 8.5 MeV C. d. 1.8 MeV 6.3 MeV Clear my choicearrow_forwardA beam of 2 Mev neutrons is incident on a slab of heavy water (D2O). The total cross-sections of deuterium and oxygen at this energy are 2.6 b and 1.6 b, respectively. A) What is the macroscopic total cross section of D2O at 2 Mev? B) How thick must the slab be to reduce the intensity of uncollided beam by a factor of 10? C) If an incident neutron has a collision in the slab, what is the relative probability that it collides with deuterium?arrow_forward
- A 2.0-MeV neutron is emitted in a fission reactor. If it loses one-half its kinetic energy in each collision with a moderator atom, how many collisions must it undergo to reach an energy associated with a gas at a room temperature of 20.0°Carrow_forwardUse the below values for this problem. Please note that the mass for H is for the entire atom (proton & electron). Neutron: m,= 1.67493x1027 kg= 1.008665 u = 939.57 MeVIC H: my = 1.67353x10 27 kg = 1.007825 u = 938.78 MeVic 1u= 1.6605x10-27 kg = 931.5 MeVic? Consider the following decay: 211 At 207 Bi + a. 211 At has a mass of 210.9874963 u, 207 Bi has a mass of 206.981593 u, and a has a mass of 4.002603 u. 85 83 85 83 Determine the disintegration energy (Q-value) in MeV. Determine the binding energy (in MeV) for 211 At. 85 EB =arrow_forwardAlpha particles are projected toward a gold foil from a distance that is sufficiently large to consider the Coulomb force negligible. The gold nuclei have 118 neutrons and 79 protons. If a 3.60 MeV alpha particle has a scattering angle of 180° and the gold nucleus does not recoil, determine the distance of closest approach of the alpha particle.arrow_forward
- The radii of He and Au nuclei are 1.6 fm and 8.0 fm, respectively. Find the kinetic energy of an alpha particle such that the two particles will just touch in a head-on collision. (in MeV units).arrow_forwardUse the below values for this problem. Please note that the mass for H is for the entire atom (proton & electron). Neutron: m = 1.67493x10-27 kg = 1.008665 u = 939.57 MeV/c² . ¹H: mH = 1.67353x10-27 kg = 1.007825 u = 938.78 MeV/c² 1 1 u = 1.6605x10-27 kg = 931.5 MeV/c² . Consider the following decay: 239 Pu 235 U+ a. 239 Pu has a mass of 239.0521634 u, 235 U has a mass of 235.0439299 u, and a has a mass of 4.002603 u. 94 92 94 92 Determine the disintegration energy (Q-value) in MeV. Q = Determine the binding energy (in MeV) for 239 Pu. 94 EB =arrow_forwardWhile reproducing the Rutherford scattering experiment in an advanced laboratory class, a student uses a gold foil with thickness 28.8 nm. The radioactive source emits α particles at 7.70 MeV, and the detector is placed at 12.5 cm from the target foil. What fraction of the α particles is detected per unit area at an angle of 40.6°? What fraction of the α particles will scatter to the angle given above or higher?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax