A concrete barrier whose cross section is an isosceles triangle runs parallel to a wall. The height of the barrier is 3 ft, the width of the base of a cross section is 8 ft, and the barrier is positioned on level ground with its base 1 ft from the wall. A straight, stiff metal rod of negligible diameter has one end on the ground, the other end against the wall, and touches the top of the barrier (Figure Ex-60). What is the minimum length the rod can have?
A concrete barrier whose cross section is an isosceles triangle runs parallel to a wall. The height of the barrier is 3 ft, the width of the base of a cross section is 8 ft, and the barrier is positioned on level ground with its base 1 ft from the wall. A straight, stiff metal rod of negligible diameter has one end on the ground, the other end against the wall, and touches the top of the barrier (Figure Ex-60). What is the minimum length the rod can have?
A concrete barrier whose cross section is an isosceles triangle runs parallel to a wall. The height of the barrier is
3
ft,
the width of the base of a cross section is
8
ft,
and the barrier is positioned on level ground with its base
1
ft
from the wall. A straight, stiff metal rod of negligible diameter has one end on the ground, the other end against the wall, and touches the top of the barrier (Figure Ex-60). What is the minimum length the rod can have?
Determine whether the lines
L₁ (t) = (-2,3, −1)t + (0,2,-3) and
L2 p(s) = (2, −3, 1)s + (-10, 17, -8)
intersect. If they do, find the point of intersection.
Convert the line given by the parametric equations y(t)
Enter the symmetric equations in alphabetic order.
(x(t)
= -4+6t
= 3-t
(z(t)
=
5-7t
to symmetric equations.
Find the point at which the line (t) = (4, -5,-4)+t(-2, -1,5) intersects the xy plane.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.