Concept explainers
A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume doubles. Show the process on a P-V diagram with respect to saturation lines and determine (a) the final temperature, (b) the work done during this process, and (c) the total heat transfer.
(a)

The final temperature of the piston cylinder device.
Answer to Problem 41P
The final temperature of the piston cylinder device is
Explanation of Solution
Write the expression for the energy balance equation.
Here, the total energy entering the system is
Substitute
Here, the mass of the piston cylinder device is
Write the expression for the mass of the system.
Here, the initial volume of the system is
Determine the final specific volume of the piston cylinder device.
The final volume of the piston cylinder device is
Conclusion:
From the Table (A-4 through A-6), obtain the value of initial specific volume, the specific internal energy at initial pressure of
Substitute
Substitute
Unit conversion of final pressure from kPa to MPa.
Refer to Table A-6, “Superheated water”, obtain the below properties at the final pressure of 0.30 MPa using interpolation method of two variables.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y are temperature and specific volume.
Show the temperature at
S. No |
specific volume |
Temperature, |
1 | ||
2 | ||
3 |
Calculate final temperature at final pressure of 0.30 MPa for liquid phase using interpolation method.
Substitute
From above calculation the final temperature is
Repeat the above statement for the final specific internal energy.
Thus, the final temperature of the piston cylinder device is
(b)

The work done during the piston-cylinder process.
Answer to Problem 41P
The work done during the piston-cylinder process is
Explanation of Solution
Determine the work done during the constant pressure process.
Here, the final pressure is
Conclusion:
Substitute
Thus, the work done during the piston-cylinder process is
(c)

The heat transfer during the piston-cylinder process.
Answer to Problem 41P
The heat transfer during the piston-cylinder process is
Explanation of Solution
Conclusion:
Substitute
Thus, the heat transfer during the piston-cylinder process is
Want to see more full solutions like this?
Chapter 4 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
- 3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward
- (read image) (answer given)arrow_forwardA cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward
- 11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forwardT₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward
- 1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward3. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. 8x2y" +10xy' + (x 1)y = 0 -arrow_forwardHello I was going over the solution for this probem and I'm a bit confused on the last part. Can you please explain to me 1^4 was used for the Co of the tubular cross section? Thank you!arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





