Concept explainers
A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume doubles. Show the process on a P-V diagram with respect to saturation lines and determine (a) the final temperature, (b) the work done during this process, and (c) the total heat transfer.
(a)
The final temperature of the piston cylinder device.
Answer to Problem 41P
The final temperature of the piston cylinder device is
Explanation of Solution
Write the expression for the energy balance equation.
Here, the total energy entering the system is
Substitute
Here, the mass of the piston cylinder device is
Write the expression for the mass of the system.
Here, the initial volume of the system is
Determine the final specific volume of the piston cylinder device.
The final volume of the piston cylinder device is
Conclusion:
From the Table (A-4 through A-6), obtain the value of initial specific volume, the specific internal energy at initial pressure of
Substitute
Substitute
Unit conversion of final pressure from kPa to MPa.
Refer to Table A-6, “Superheated water”, obtain the below properties at the final pressure of 0.30 MPa using interpolation method of two variables.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y are temperature and specific volume.
Show the temperature at
S. No |
specific volume |
Temperature, |
1 | ||
2 | ||
3 |
Calculate final temperature at final pressure of 0.30 MPa for liquid phase using interpolation method.
Substitute
From above calculation the final temperature is
Repeat the above statement for the final specific internal energy.
Thus, the final temperature of the piston cylinder device is
(b)
The work done during the piston-cylinder process.
Answer to Problem 41P
The work done during the piston-cylinder process is
Explanation of Solution
Determine the work done during the constant pressure process.
Here, the final pressure is
Conclusion:
Substitute
Thus, the work done during the piston-cylinder process is
(c)
The heat transfer during the piston-cylinder process.
Answer to Problem 41P
The heat transfer during the piston-cylinder process is
Explanation of Solution
Conclusion:
Substitute
Thus, the heat transfer during the piston-cylinder process is
Want to see more full solutions like this?
Chapter 4 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- Water initially at 200 kPa and 300°C is contained in a piston-cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa. On the T-u diagram sketch, with respect to the saturation lines, the process curves passing through both the initial, intermediate, and final states of the water. Label the T, P and v values for end states on the process curves. Find the overall change in internal energy between the initial and final states per unit mass of water. Water 200 kPa 300°Carrow_forwardWater initially at 200 kPa and 300°C is contained in a piston–cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool until the pressure is 100 kPa. On the T-v diagrams sketch, with respect to the saturation lines, the process curves pass through both the initial, intermediate, and final states of the water. Label the T, P and v values for end states on the process curves. Find the overall change in internal energy between the initial and final states per unit mass of water.arrow_forwardA piston-cylinder device initially contains 0.8 m^3 of saturated water vapor at 275 kPa. At this state, the piston is resting on a set of stops, and the mass of piston is such that a pressure of 500 kPa is required to move it. Heat is now slowly transferred to the steam until the volume doubles. Show the process on a P-v diagram with respect to saturation lines and determine (a) the final temperature, (b) the work done duringthe process, and (c) the total heat transfer.arrow_forward
- A piston-cylinder device initially contains 1 kg saturated liquid water at 220°C. Now heat is transferred to the water until the volume expands quadruple of its initial volume. Eventually, the cylinder contains saturated vapor only. Determine the volume at the final stage. (i) (ii) Determine the final temperature and pressure. (iii) Determine the internal energy change of the water. (iv) Sketch the T-v diagram and include all the related information.arrow_forwardplease include all stepsarrow_forwardA piston-cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1.5 m3. Use the data from the steam tables. Determine the total heat transfer. (Please provide an answer before moving on to the next part.) The total heat transfer is kJarrow_forward
- Water initially at 300 kPa and 250°C is contained in a constant-volume tank. The water is allowed to cool until its pressure is 150 kPa. On the P-v and T-v diagrams, sketch, with respect to the saturation lines, the process curve passing through both the initial and final states of the water. Label the end states on the process curve. Also, on both the P-v and T-v diagrams, sketch the isotherms passing through both states and show their values, in °C, on the isothermsarrow_forwardA frictionless piston-cylinder device contains 3 L of saturated liquid water at a pressure of 200 kPa. Water is stirred by a paddle wheel for 22 minutes while a current of 7.5 A flows through a resistor placed in the water. If the 74% of the water remains at the liquid phase and the rest water is evaporated during this constant pressure process. If the voltage of the electricity source is 160 volts, determine (a) the final temperature and (b) the amount of work added to the water by the paddle wheel. Also, show the process on a P-v diagram with respect to saturation lines. H20 P constant W.arrow_forwardQ2/ A piston-cylinder device contains steam initially at 1 MPa, 450°C, and 2.5 m3. Steam is allowed to cool at constant pressure until it first starts condensing. Show the process on a T-v diagram with respect to saturation lines and determine: (a) the mass of the steam, (b) the final temperature, and (c) the amount of heat transfer.arrow_forward
- Steam is contained in a 4-L volume at a pressure of 1.5 MPa and a temperature of 400 C. If the pressure is held constant by expanding the volume while 20 kJ of heat is added, the final temperature is nearestarrow_forwardA frictionless piston cylinder device contains 3 L of saturated liquid water at a temperature of 110°C. Water is stirred by a paddle wheel for 22 minutes while a current of 7.5 A flows through a resistor placed in the water. If the 74% of the water remains at the liquid phase and the rest water is evaporated during this constant pressure process. If the voltage of the electricity source is 160 volts, determine (a) the initial pressure and (b) the amount of work added to the water by the paddle wheel. Also, show the process on a P-v diagram with respect to saturation lines. H2O P= constant We sharrow_forward0.2 m^3 of an ideal gas at a pressure of 2Mpa and 600 k is expanded isothermally to 5 times the initial volume. It is then cooled to 300 K at constant Volume and then compressed back polytropically to its initial state. Show the process on a P-V diagram and determine the work done.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY