Concept explainers
(a)
Find the closest distance between the center of the nuclei.
(a)
Answer to Problem 26P
The closest distance between the center of the nuclei is
Explanation of Solution
The deuterium-tritium fusion reaction,
Here, the tritium nucleus is at rest. The mass number of deuterium is
Write the formula for radius of the nuclei
Where,
Conclusion:
The closest distance between the center of the two nuclei is
Substitute equation (I) in the above equation and solve
Substitute
Thus, the closest distance between the center of the nuclei is
(b)
Find the electric potential energy at the closest distance between the center of the nuclei.
(b)
Answer to Problem 26P
The electric potential energy at the closest distance between the center of the nuclei is
Explanation of Solution
The closest distance between the center of the nuclei is
Write the formula for potential energy
Where,
Conclusion:
Substitute
Thus, the electric potential energy at the closest distance between the center of the nuclei is
(c)
The speed of the deuterium and tritium nuclei as they touch.
(c)
Answer to Problem 26P
The speed of the deuterium and tritium nuclei as they touch is
Explanation of Solution
The mass of deuterium is approximately
According to the law of conservation of momentum,
Substitute
Thus, the speed of the deuterium and tritium nuclei as they touch is
(d)
Find the minimum initial deuteron energy required to achieve fusion.
(d)
Answer to Problem 26P
The minimum initial deuteron energy required to achieve fusion is
Explanation of Solution
According to the law of conservation of energy,
Here,
The deuteron has been moving from the beginning (infinity), therefore the initial potential energy of deuteron is zero,
Write the formula for kinetic energy
Where,
Conclusion:
Substituting equation (V) in (IV),
Substitute (III) in the above equation,
Substitute
Thus, the minimum initial deuteron energy required to achieve fusion is
(e)
Why the fusion reaction occurs at much lower deuteron energies then the energy calculated in part (d).
(e)
Answer to Problem 26P
The fusion reaction occurs at much lower deuteron energies then the energy calculated must be possibly by tunneling through the potential energy barrier.
Explanation of Solution
Classically, the particle with energy
Therefore, the fusion reaction occurs at much lower deuteron energies then the energy calculated must be possibly by tunneling through the potential energy barrier.
Want to see more full solutions like this?
Chapter 45 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning