Concept explainers
Explain why both 3792 and 2916 would be bad choices for the initial term of a sequence of four-digit pseudorandom numbers generated by the middle square method.
The power generator is a method for generating pseudorandom numbers. To use the power generator, parameters p and d are specified, where p is a prime, d is a positive integer such that
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
- Suppose that the check digit is computed as described in Example . Prove that transposition errors of adjacent digits will not be detected unless one of the digits is the check digit. Example Using Check Digits Many companies use check digits for security purposes or for error detection. For example, an the digit may be appended to a -bit identification number to obtain the -digit invoice number of the form where the th bit, , is the check digit, computed as . If congruence modulo is used, then the check digit for an identification number . Thus the complete correct invoice number would appear as . If the invoice number were used instead and checked, an error would be detected, since .arrow_forwardRework Example 5 by breaking the message into two-digit blocks instead of three-digit blocks. What is the enciphered message using the two-digit blocks? Example 5: RSA Public Key Cryptosystem We first choose two primes (which are to be kept secret): p=17, and q=43. Then we compute m (which is to be made public): m=pq=1743=731. Next we choose e (to be made public), where e must be relatively prime to (p1)(q1)=1642=672. Suppose we take e=205. The Euclidean Algorithm can be used to verify that (205,672)=1. Then d is determined by the equation 1=205dmod672 Using the Euclidean Algorithm, we find d=613 (which is kept secret). The mapping f:AA, where A=0,1,2,...,730, defined by f(x)=x205mod731 is used to encrypt a message. Then the inverse mapping g:AA, defined by g(x)=x613mod731 can be used to recover the original message. Using the 27-letter alphabet as in Examples 2 and 3, the plaintext message no problem is translated into the message as follows: plaintext:noproblemmessage:13142615171401110412 The message becomes 13142615171401110412. This message must be broken into blocks mi, each of which is contained in A. If we choose three-digit blocks, each block mim=731. mi:13142615171401110412f(mi)=mi205mod731=ci:082715376459551593320 The enciphered message becomes 082715376459551593320 where we choose to report each ci with three digits by appending any leading zeros as necessary. To decipher the message, one must know the secret key d=613 and apply the inverse mapping g to each enciphered message block ci=f(mi): ci:082715376459551593320g(ci)=ci613mod731:13142615171401110412 Finally, by re-breaking the message back into two-digit blocks, one can translate it back into plaintext. Three-digitblockmessage:13142615171401110412Two-digitblockmessage:13142615171401110412Plaintext:noproblem The RSA Public Key Cipher is an example of an exponentiation cipher.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell