In Exercises 1–6 , investigate the one-parameter family of functions. Assume that a is positive. (a) Graph f ( x ) using three different values for a . (b) Using your graph in part (a), describe the critical points of f and how they appear to move as a increases. (c) Find a formula for the x -coordinates of the critical point(s) of f in terms of a . f ( x ) = a x 2 + x for x > 0
In Exercises 1–6 , investigate the one-parameter family of functions. Assume that a is positive. (a) Graph f ( x ) using three different values for a . (b) Using your graph in part (a), describe the critical points of f and how they appear to move as a increases. (c) Find a formula for the x -coordinates of the critical point(s) of f in terms of a . f ( x ) = a x 2 + x for x > 0
Author: Deborah Hughes-Hallett, William G. McCallum, Andrew M. Gleason, Daniel E. Flath, Patti Frazer Lock, Sheldon P. Gordon, David O. Lomen, David Lovelock, Brad G. Osgood, Andrew Pasquale, Douglas Quinney, Jeff Tecosky-Feldman, Joseph Thrash, Karen R. Rhea, Thomas W. Tucker
3.1 Limits
1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice.
x+3°
x+3*
x+3
(a) Is 5
(c) Does not exist
(b) is 6
(d) is infinite
1 pts
Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and
G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is
Question 1
-0.246
0.072
-0.934
0.478
-0.914
-0.855
0.710
0.262
.
2. Answer the following questions.
(A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity
Vx (VF) V(V •F) - V²F
(B) [50%] Remark. You are confined to use the differential identities.
Let u and v be scalar fields, and F be a vector field given by
F = (Vu) x (Vv)
(i) Show that F is solenoidal (or incompressible).
(ii) Show that
G =
(uvv – vVu)
is a vector potential for F.
Chapter 4 Solutions
Calculus: Single And Multivariable, 7e Student Solutions Manual
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.