![Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach](https://www.bartleby.com/isbn_cover_images/9781285464640/9781285464640_largeCoverImage.gif)
Brain Growth And IQs Refer to Exercise 67. The researchers at the Institute also measured the thickness (also in millimeters) of the cortex of children of age t years who were of average intelligence. These data lead to the model
A(t) = −0.00005t3 − 0.000826t2 + 0.0153t + 4.55 (5 ≤ t ≤ 19)
Show that the cortex of children with average intelligence reaches maximum thickness at age 6 years.
Source: Nature.
67. Brain Growth And IQs In a study conducted at the National Institute of Mental Health, researchers followed the development of the cortex, the thinking part of the brain, in 307 children. Using repeated magnetic resonance imaging scans from childhood to the latter teens, they measured the thickness (in millimeters) of the cortex of children of age t years with the highest IQs−121 to 149. These data lead to the model
S(t) = 0.000989t3 − 0.0486t2 + 0.7116t + 1.46 (5 ≤ t ≤ 19)
Show that the cortex of children with superior intelligence reaches maximum thickness around age 11 years.
Hint: Use the
Source: Nature.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 4 Solutions
Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach
- Find the distance from the point (-9, -3, 0) to the line ä(t) = (−4, 1, −1)t + (0, 1, −3) .arrow_forward1 Find a vector parallel to the line defined by the parametric equations (x(t) = -2t y(t) == 1- 9t z(t) = -1-t Additionally, find a point on the line.arrow_forwardFind the (perpendicular) distance from the line given by the parametric equations (x(t) = 5+9t y(t) = 7t = 2-9t z(t) to the point (-1, 1, −3).arrow_forward
- Let ä(t) = (3,-2,-5)t + (7,−1, 2) and (u) = (5,0, 3)u + (−3,−9,3). Find the acute angle (in degrees) between the lines:arrow_forwardA tank initially contains 50 gal of pure water. Brine containing 3 lb of salt per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?arrow_forwardpleasd dont use chat gptarrow_forward
- Draw the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote.arrow_forwardDraw the asymptotes (if there are any). Then plot two points on each piece of the graph.arrow_forwardCancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)