
Single Variable Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112785
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.4, Problem 53E
Show that the curve y = x − tan−1 x has two slant asymptotes: y = x + π/2 and y = x − π/2. Use this fact to help sketch the curve.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 4 Solutions
Single Variable Essential Calculus: Early Transcendentals
Ch. 4.1 - Explain the difference between an absolute minimum...Ch. 4.1 - Suppose f is a continuous function defined on a...Ch. 4.1 - For each of the numbers a, b, c, d, r, and s,...Ch. 4.1 - For each of the numbers a, b, c, d, r, and s,...Ch. 4.1 - Use the graph to state the absolute and local...Ch. 4.1 - Use the graph to state the absolute and local...Ch. 4.1 - Sketch the graph of a function f that is...Ch. 4.1 - 710 Sketch the graph of a function f that is...Ch. 4.1 - 710 Sketch the graph of a function f that is...Ch. 4.1 - 710 Sketch the graph of a function f that is...
Ch. 4.1 - (a) Sketch the graph of a function that has a...Ch. 4.1 - (a) Sketch the graph of a function on [1, 2] that...Ch. 4.1 - (a) Sketch the graph of a function on [1, 2] that...Ch. 4.1 - (a) Sketch the graph of a function that has two...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Sketch the graph of f by hand and use your sketch...Ch. 4.1 - Find the critical numbers of the function....Ch. 4.1 - Find the critical numbers of the function. f(x) =...Ch. 4.1 - Find the critical numbers of the function. f(x) =...Ch. 4.1 - Find the critical numbers of the function. f(x) =...Ch. 4.1 - Find the critical numbers of the function. g(t) =...Ch. 4.1 - Find the critical numbers of the function. g(t) =...Ch. 4.1 - Find the critical numbers of the function....Ch. 4.1 - Find the critical numbers of the function....Ch. 4.1 - Find the critical numbers of the function. F(x) =...Ch. 4.1 - Find the critical numbers of the function. g() = 4...Ch. 4.1 - Find the critical numbers of the function. f() = 2...Ch. 4.1 - Find the critical numbers of the function. g(x) =...Ch. 4.1 - Find the critical numbers of the function. f(x) =...Ch. 4.1 - Find the critical numbers of the function. f(x) =...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - Find the absolute maximum and absolute minimum...Ch. 4.1 - If a and b are positive numbers, find the maximum...Ch. 4.1 - Use a graph to estimate the critical numbers of...Ch. 4.1 - (a) Use a graph to estimate the absolute maximum...Ch. 4.1 - (a) Use a graph to estimate the absolute maximum...Ch. 4.1 - (a) Use a graph to estimate the absolute maximum...Ch. 4.1 - (a) Use a graph to estimate the absolute maximum...Ch. 4.1 - Between 0C and 30C, the volume V (in cubic...Ch. 4.1 - An object with weight W is dragged along a...Ch. 4.1 - A model for the U S average price of a pound of...Ch. 4.1 - The Hubble Space Telescope was deployed April 24,...Ch. 4.1 - When a foreign object lodged in the trachea...Ch. 4.1 - Show that 5 is a critical number of the function...Ch. 4.1 - Prove that the function f(x)=x101+x51+x+1 has...Ch. 4.1 - If f has a local minimum value at c, show that the...Ch. 4.1 - Prove Fermats Theorem for the case in which f has...Ch. 4.1 - A cubic function is a polynomial of degree 3; that...Ch. 4.2 - Verify that the function satisfies the three...Ch. 4.2 - Verify that the function satisfies the three...Ch. 4.2 - Verify that the function satisfies the three...Ch. 4.2 - Verify that the function satisfies the three...Ch. 4.2 - Let f(x) = 1 x2/3. Show that f(l) = f(1) but...Ch. 4.2 - Let f(x) = tan x. Show that f(0) = f() but there...Ch. 4.2 - Use the graph of f to estimate the values of c...Ch. 4.2 - Use the graph of f given in Exercise 7 to estimate...Ch. 4.2 - Verify that the function satisfies the hypotheses...Ch. 4.2 - Verify that the function satisfies the hypotheses...Ch. 4.2 - Verify that the function satisfies the hypotheses...Ch. 4.2 - Verify that the function satisfies the hypotheses...Ch. 4.2 - Find the number c that satisfies the conclusion of...Ch. 4.2 - Find the number c that satisfies the conclusion of...Ch. 4.2 - Let f(x) = (x 3)2. Show that there is no value of...Ch. 4.2 - Let f(x) = 2 |2x 1|. Show that there is no value...Ch. 4.2 - Show that the equation has exactly one real root....Ch. 4.2 - Show that the equation has exactly one real root....Ch. 4.2 - Show that the equation x3 15x + c = 0 has at most...Ch. 4.2 - Show that the equation x4 + 4x + c = 0 has at most...Ch. 4.2 - (a) Show that a polynomial of degree 3 has at most...Ch. 4.2 - (a) Suppose that f is differentiable on and has...Ch. 4.2 - If f(1) = 10 and f(x) 2 for 1 x 4, how small...Ch. 4.2 - Suppose that 3 f(x) 5 for all values of x. Show...Ch. 4.2 - Does there exist a function f such that f(0) = 1,...Ch. 4.2 - Suppose that f and g are continuous on [a, b] and...Ch. 4.2 - Show that 1+x1+12xifx0.Ch. 4.2 - Suppose f is an odd function and is differentiable...Ch. 4.2 - Use the Mean Value Theorem to prove the inequality...Ch. 4.2 - If f(x) = c (c a constant) for all x, use...Ch. 4.2 - Let f(x) = l/x and g(x)={1xifx01+1xifx0 Show that...Ch. 4.2 - Use Theorem 5 to prove the identity...Ch. 4.2 - Prove the identity arcsinx1x+1=2arctanx2Ch. 4.2 - At 2:00 PM a cars speedometer reads 30 mi/h. At...Ch. 4.2 - Two runners start a race at the same time and...Ch. 4.2 - A number a is called a fixed point of a function f...Ch. 4.3 - In each part state the x-coordinates of the...Ch. 4.3 - The graph of the first derivative f of a function...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - (a) Find the intervals on which f is increasing or...Ch. 4.3 - Find the local maximum and minimum values of f...Ch. 4.3 - Find the local maximum and minimum values of f...Ch. 4.3 - (a) Find the critical numbers of f(x) = x4(x 1)3....Ch. 4.3 - Suppose f is continuous on (, ). (a) If f(2) = 0...Ch. 4.3 - 1720 Sketch the graph of a function that satisfies...Ch. 4.3 - Sketch the graph of a function that satisfies all...Ch. 4.3 - Sketch the graph of a function that satisfies all...Ch. 4.3 - Sketch the graph of a function that satisfies all...Ch. 4.3 - Sketch the graph of a function that satisfes all...Ch. 4.3 - Sketch the graph of a function that satisfes all...Ch. 4.3 - The graph of the derivative f of a continuous...Ch. 4.3 - The graph of the derivative f of a continuous...Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the intervals of increase or decrease....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - (a) Find the vertical and horizontal asymptotes....Ch. 4.3 - Suppose the derivative of a function f is f(x) =...Ch. 4.3 - Use the methods of this section to sketch the...Ch. 4.3 - (a) Use a graph of f to estimate the maximum and...Ch. 4.3 - (a) Use a graph of f to estimate the maximum and...Ch. 4.3 - A drug response curve describes the level of...Ch. 4.3 - Prob. 50ECh. 4.3 - Find a cubic function f(x) = ax3 + bx2 + cx + d...Ch. 4.3 - For what values of the numbers a and b does the...Ch. 4.3 - (a) If the function f(x) = x3 + ax2 + bx has the...Ch. 4.3 - Show that the curve y = (1 + x)/(1 + x2) has three...Ch. 4.3 - Show that the curves y = ex and y = ex touch the...Ch. 4.3 - Show that the inflection points of the curve y = x...Ch. 4.3 - Show that tan x x for 0 x /2. [Hint: Show that...Ch. 4.3 - (a) Show that ex 1 + x for x 0. (b) Deduce that...Ch. 4.3 - Show that a cubic function (a third-degree...Ch. 4.3 - For what values of c does the polynomial P(x) = x4...Ch. 4.3 - Prove that if (c, f(c)) is a point of inflection...Ch. 4.3 - Show that if f(x) = x4, then f(0) = 0, but (0, 0)...Ch. 4.3 - Show that the function g(x) = x | x | has an...Ch. 4.3 - Suppose that f is continuous and f(c) = f(c) = 0,...Ch. 4.3 - Suppose f is differentiable on an interval I and...Ch. 4.3 - For what values of c is the function f(x)=cx+1x2+3...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - 144 Use the guidelines of this section to sketch...Ch. 4.4 - 144 Use the guidelines of this section to sketch...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - 144 Use the guidelines of this section to sketch...Ch. 4.4 - 144 Use the guidelines of this section to sketch...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - The table gives the population of the world P(t),...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Prob. 27ECh. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - 144 Use the guidelines of this section to sketch...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - 144 Use the guidelines of this section to sketch...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - In the theory of relativity, the mass of a...Ch. 4.4 - In the theory of relativity, the energy of a...Ch. 4.4 - The figure shows a beam of length L embedded in...Ch. 4.4 - Coulombs Law states that the force of attraction...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Use the guidelines of this section to sketch the...Ch. 4.4 - Show that the curve y = x tan1 x has two slant...Ch. 4.4 - Show that the curve y=x2+4x has two slant...Ch. 4.4 - Produce graphs of f that reveal all the important...Ch. 4.4 - Produce graphs of f that reveal all the important...Ch. 4.4 - Produce graphs of f that reveal all the important...Ch. 4.4 - Produce graphs of f that reveal all the important...Ch. 4.4 - Produce graphs of f that reveal all the important...Ch. 4.4 - Produce graphs of f that reveal all the important...Ch. 4.4 - Describe how the graph of f varies as c varies....Ch. 4.4 - Describe how the graph of f varies as c varics....Ch. 4.4 - Describe how the graph of f varies as c varics....Ch. 4.4 - Describe how the graph of f varies as c varics....Ch. 4.4 - Describe how the graph of f varies as c varies....Ch. 4.4 - Investigate the family of curves given by the...Ch. 4.5 - Consider the following problem: Find two numbers...Ch. 4.5 - Find two numbers whose difference is 100 and whose...Ch. 4.5 - Prob. 3ECh. 4.5 - Prob. 4ECh. 4.5 - Prob. 5ECh. 4.5 - Prob. 6ECh. 4.5 - Prob. 7ECh. 4.5 - Prob. 8ECh. 4.5 - Prob. 9ECh. 4.5 - Consider the following problem: A box with an open...Ch. 4.5 - Prob. 12ECh. 4.5 - Prob. 11ECh. 4.5 - A rectangular storage container with an open top...Ch. 4.5 - Prob. 13ECh. 4.5 - Prob. 15ECh. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 24ECh. 4.5 - Prob. 19ECh. 4.5 - Prob. 20ECh. 4.5 - Prob. 21ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 23ECh. 4.5 - Prob. 26ECh. 4.5 - Prob. 25ECh. 4.5 - Prob. 27ECh. 4.5 - Prob. 28ECh. 4.5 - Prob. 29ECh. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Prob. 35ECh. 4.5 - Prob. 36ECh. 4.5 - Prob. 38ECh. 4.5 - Prob. 37ECh. 4.5 - Prob. 39ECh. 4.5 - Prob. 40ECh. 4.5 - Prob. 41ECh. 4.5 - Prob. 42ECh. 4.5 - Prob. 43ECh. 4.5 - Prob. 44ECh. 4.5 - Prob. 45ECh. 4.5 - Prob. 46ECh. 4.5 - Prob. 47ECh. 4.5 - Prob. 48ECh. 4.5 - Prob. 49ECh. 4.5 - Prob. 50ECh. 4.5 - Prob. 32ECh. 4.5 - Prob. 51ECh. 4.5 - Prob. 52ECh. 4.5 - Prob. 53ECh. 4.5 - Prob. 54ECh. 4.5 - Prob. 56ECh. 4.5 - Prob. 57ECh. 4.5 - Prob. 58ECh. 4.5 - Prob. 55ECh. 4.6 - The figure shows the graph of a function f....Ch. 4.6 - Follow the instructions for Exercise 1 (a) but use...Ch. 4.6 - Prob. 3ECh. 4.6 - For each initial approximation, determine...Ch. 4.6 - Prob. 5ECh. 4.6 - Use Newtons method with the specified initial...Ch. 4.6 - Prob. 7ECh. 4.6 - Prob. 8ECh. 4.6 - Prob. 9ECh. 4.6 - Prob. 10ECh. 4.6 - Use Newtons method to approximate the given number...Ch. 4.6 - Prob. 12ECh. 4.6 - Prob. 13ECh. 4.6 - Prob. 14ECh. 4.6 - Prob. 15ECh. 4.6 - Prob. 16ECh. 4.6 - Prob. 17ECh. 4.6 - Prob. 18ECh. 4.6 - Prob. 21ECh. 4.6 - Prob. 19ECh. 4.6 - Prob. 20ECh. 4.6 - Prob. 22ECh. 4.6 - Prob. 23ECh. 4.6 - Prob. 24ECh. 4.6 - Prob. 25ECh. 4.6 - Prob. 26ECh. 4.6 - Prob. 27ECh. 4.6 - Prob. 28ECh. 4.6 - Prob. 29ECh. 4.6 - Prob. 30ECh. 4.6 - Prob. 31ECh. 4.6 - Prob. 32ECh. 4.7 - Find the most general antiderivative of the...Ch. 4.7 - Find the most general antiderivative of the...Ch. 4.7 - Prob. 3ECh. 4.7 - Prob. 5ECh. 4.7 - Prob. 4ECh. 4.7 - Prob. 6ECh. 4.7 - Prob. 7ECh. 4.7 - Find the most general antiderivative of the...Ch. 4.7 - Prob. 9ECh. 4.7 - Prob. 10ECh. 4.7 - Prob. 11ECh. 4.7 - Prob. 12ECh. 4.7 - Prob. 13ECh. 4.7 - Prob. 14ECh. 4.7 - Prob. 15ECh. 4.7 - Prob. 16ECh. 4.7 - Prob. 17ECh. 4.7 - Find f. f(x) = x6 4x4 + x + 1Ch. 4.7 - Prob. 19ECh. 4.7 - Prob. 20ECh. 4.7 - Prob. 21ECh. 4.7 - Prob. 22ECh. 4.7 - Prob. 23ECh. 4.7 - Prob. 24ECh. 4.7 - Prob. 25ECh. 4.7 - Prob. 26ECh. 4.7 - Prob. 27ECh. 4.7 - Prob. 28ECh. 4.7 - Prob. 29ECh. 4.7 - Prob. 30ECh. 4.7 - Find f. f() = sin + cos , f(0) = 3, f(0) = 4Ch. 4.7 - Prob. 32ECh. 4.7 - Prob. 33ECh. 4.7 - Prob. 34ECh. 4.7 - Prob. 35ECh. 4.7 - Prob. 36ECh. 4.7 - Prob. 37ECh. 4.7 - Prob. 38ECh. 4.7 - Prob. 39ECh. 4.7 - Prob. 40ECh. 4.7 - Prob. 41ECh. 4.7 - A particle is moving with the given data. Find the...Ch. 4.7 - Prob. 43ECh. 4.7 - Prob. 44ECh. 4.7 - Prob. 45ECh. 4.7 - Prob. 46ECh. 4.7 - Prob. 47ECh. 4.7 - Prob. 48ECh. 4.7 - Prob. 49ECh. 4.7 - Prob. 50ECh. 4.7 - Prob. 51ECh. 4.7 - Prob. 52ECh. 4.7 - Prob. 53ECh. 4.7 - Prob. 54ECh. 4.7 - Prob. 55ECh. 4 - Prob. 44RECh. 4 - Prob. 1RCCCh. 4 - Prob. 2RCCCh. 4 - Prob. 3RCCCh. 4 - Prob. 4RCCCh. 4 - Prob. 5RCCCh. 4 - Prob. 6RCCCh. 4 - Prob. 7RCCCh. 4 - Prob. 8RCCCh. 4 - Prob. 9RCCCh. 4 - Prob. 1RQCh. 4 - Prob. 2RQCh. 4 - Prob. 3RQCh. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - Prob. 7RQCh. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQCh. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - Prob. 14RQCh. 4 - Prob. 15RQCh. 4 - Prob. 16RQCh. 4 - Prob. 17RQCh. 4 - Prob. 18RQCh. 4 - Prob. 19RQCh. 4 - Prob. 1RECh. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - The figure shows the graph of the derivative f of...Ch. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - 1524 Use the guidelines of Section 4.4 to sketch...Ch. 4 - Prob. 16RECh. 4 - Prob. 18RECh. 4 - Prob. 17RECh. 4 - Prob. 20RECh. 4 - Prob. 19RECh. 4 - Prob. 22RECh. 4 - Prob. 21RECh. 4 - Prob. 23RECh. 4 - Prob. 24RECh. 4 - Prob. 25RECh. 4 - Prob. 26RECh. 4 - Prob. 27RECh. 4 - Prob. 28RECh. 4 - Prob. 29RECh. 4 - Prob. 33RECh. 4 - Prob. 34RECh. 4 - Prob. 35RECh. 4 - Prob. 36RECh. 4 - Prob. 37RECh. 4 - Prob. 38RECh. 4 - Prob. 39RECh. 4 - Prob. 40RECh. 4 - Prob. 41RECh. 4 - Prob. 42RECh. 4 - Prob. 43RECh. 4 - Prob. 45RECh. 4 - A metal storage tank with volume V is to be...Ch. 4 - Prob. 47RECh. 4 - Prob. 48RECh. 4 - Prob. 49RECh. 4 - Prob. 50RECh. 4 - Prob. 51RECh. 4 - Prob. 52RECh. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - Prob. 56RECh. 4 - Prob. 57RECh. 4 - Prob. 58RECh. 4 - Prob. 60RECh. 4 - Prob. 59RECh. 4 - Prob. 61RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Finding the length of an arc; Author: Maths Genie;https://www.youtube.com/watch?v=fWGPf5peCc8;License: Standard YouTube License, CC-BY
Circles, Angle Measures, Arcs, Central & Inscribed Angles, Tangents, Secants & Chords - Geometry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=nd46bA9DKE0;License: Standard Youtube License