University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 44.34E
(a)
To determine
To show: The equation
(b)
To determine
The speed of the galaxy relative to earth if red shift is due to Doppler shift.
(c)
To determine
The distance of the galaxy from earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Edwin Hubble observed that the light from very distant galaxies was redshifted and that the farther away a galaxy was, the greater its redshift. What does this say about very distant galaxies?
When Hubble first estimated the Hubble constant, galaxy distances were still very uncertain, and he got a value for H of about 600 km/s per Mpc. What would this have implied about the age of the universe?
What problems would this have presented for cosmologists?
1. The tau lepton has a mass of ~2 GeV/c² and lives on average for 3x10-¹3s. If you try to measure
its mass (i.e. rest energy), what is the best precision that you can obtain?
The Z boson has a mass of ~90 GeV/c² and lives on average for 3x10-25 s. If you try to measure
its mass, what is the best precision that you can obtain?
The expanding universe is carrying distant objects away from each other at a rate proportional to their separations. We use the Doppler effect observed in spectra of distant galaxies and quasars to calculate recession speeds. For the most distant objects recession speeds approach c, and therefore, the relativistic Doppler shift expression must be used. We define the redshift, z, as the fractional change in wavelength.
a) The most distant quasar currently known is ULAS J1120+0641, discovered with the UK Infrared Telescope on Mauna Kea. It has a redshift of 7.1. Calculate its radial velocity in terms of v/c.
b) Determine the distance to this quasar.
c) At what wavelength would the Ha line (656.28 nm) be observed for this quasar?
Chapter 44 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 44.1 - Each of the following particles can be exchanged...Ch. 44.2 - Prob. 44.2TYUCh. 44.3 - From conservation of energy, a particle of mass m...Ch. 44.4 - Prob. 44.4TYUCh. 44.5 - Prob. 44.5TYUCh. 44.6 - Is it accurate to say that your body is made of...Ch. 44.7 - Prob. 44.7TYUCh. 44 - Prob. 44.1DQCh. 44 - Prob. 44.2DQCh. 44 - When they were first discovered during the 1930s...
Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the Check Your Learning section of Example 27.1, you were told that several lines of hydrogen absorption in the visible spectrum have rest wavelengths of 410 nm, 434 nm, 486 nm, and 656 nm. In a spectrum of a distant galaxy, these same lines are observed to have wavelengths of 492 nm, 521 nm, 583 nm, and 787 nm, respectively. The example demonstrated that z=0.20 for the 410 nm line. Show that you will obtain the same redshift regardless of which absorption line you measure.arrow_forwardName: Hubble Distances Redshift z parameter The relativistic redshift is parametrized by z and given by Δ In terms of the scale factor, 2= X do - de de 1+z= ao a (2) Problem 01. Find the redshift z for a Hydrogen spectral line originally at 656 nm which has been observed at a wavelength of 1.64 μm. Astro 001 Fall 2022 Problem 02. How much smaller was the universe when this light was emitted? U₁ = DHO Using the redshift to measure the velocity, we find D~ (1) 0.1 Hubble's Law Hubble's Law states that the recession velocity of a redshifted galaxy is given by the product of the distance and the Hubble constant. (3) ZC Ho where c = 3 x 108 m/s and Ho = 2.3 x 10-18 s in standard units. The standard measurement of the Hubble constant is Ho = 71 (km/s)/Mpc. Problem 03. What is the distance in Mpc and ly to the galaxy measured in problem 01? 1 pc = 3.26 ly.arrow_forwardWhat is the Hubble Time in Gyr, given the following values of Ho? a. Ho= 50km/s/Mpc b. Ho= 75km/s/Mpc C. Ho= 100km/s/Mpcarrow_forward
- The spectrum of the sodium atom is detected in the light from a distant galaxy. (a) If the 590.0 nm line is redshifted to 658.5 nm, at what speed is the galaxy receding from the earth? (b) Use the Hubble law to calculate the distance of the galaxy from the earth.arrow_forwardMost of the particles known to physicists are unstable. For example, the lifetime of the neutral pion,π0, is about 8.4x10-17 s. Its mass is 135.0 MeV/c2. a) What is the energy width of the π0 in its ground state? b) What is the relative uncertainty ∆m/m of the pion’s mass?arrow_forwardProblem 3. Consider a flat, single component universe. 1. For a light source at redshift z that is observed at time to, show that z changes at a rate dz dto = = Ho(1 + 2) — Ho(1+2)³(¹+w)/2 (2.1) 2. For what values of w does the observed redshift increase with time? 3. Assuming the single component is matter and Ho = 68 km/s/Mpc, you observe a galaxy at z = 1. Using Equation 2.1, determine how long you will have to keep observing the galaxy in order to see its redshift change by 1 part in 106.arrow_forward
- Please answer all three parts! Thank you. Stanford has a linear particle accelerator (SLAC) which is 3 km long that produces electrons with a total energy of 50 GeV. These electrons lead exciting (albeit brief) lives, zooming along the accelerator before slamming into a target to produce other high-energy particles. a. Consider the viewpoint of one of the electrons. From the electron’s point of view, how long is the accelerator? Note that it is possible to answer this question without calculating the electron’s velocity. b. Let’s figure out how fast the electrons are traveling. Start by solving for β = u/c in terms of 1/γ following the trick we used in class. Use the binomial expansion if that is helpful. At what speed does a 50 GeV electron travel? c. The Large Hadron Collider (LHC) at CERN presently accelerates protons to a total energy of 6.5 TeV. Imagine a pulse of light, a 50 GeV electron, and a 6.5 TeV proton race each other along a 3 km distance. The light pulse will surely win…arrow_forwardThe bright radio galaxy, 3c84, is observed to be moving away from the Earth at such high speed that the emitted blue 434-nm Hγ line of hydrogen is Doppler-shifted to 442 nm. Edwin Hubble discovered that all objects outside the local group of galaxies are moving away from us, with speeds v proportional to their distances R. Hubble's law is expressed as v = HR, where the Hubble constant has the approximate value H ≈ 22 ✕ 10−3 m/(s · ly). Determine the distance from the Earth to this galaxy. _________ lyarrow_forwarda)Define the term “standard candle” as used in cosmology. b)The flux is defined asf(Dlum) = L/4πD^2lumwhere L is the absolute luminosity and Dlum is the distance to the radiation source (youmay assume z ≪ 1).Assume that we have measured the flux to be f = 7.234 10^−23 Wm^−2 and the absoluteluminosity is given by L = 3.828 x10^26W. Calculate the luminosity distance D lum to the objectin Mpc.arrow_forward
- The rest wavelength of the Hα transition of atomic hydrogen is 656.3 nm (recall that 1 nm=10-9 m). If an observer takes a spectrum of a distant galaxy and identifies that line at 920 nm, what is the redshift of the galaxy? (recall that z=(λobs-λem)/λem ) If the value of the Hubble constant is Ho=71 km/s/Mpc, what is the approximate distance to the galaxy in Mpc?arrow_forwardIn vacuum, the H-alpha line has a rest-frame wavelength of 656.461 nm. You took a spectrum of the center of a galaxy at an observatory on the ground and measured a wavelength of 656.65 nm for the H-alpha line. What is the radial velocity of the galaxy relative to the observer [km/s]? Note that the index of refraction of air is 1.0003 at that wavelength. As a result, the rest-frame wavelength of the H-alpha line in air differs from the rest-frame wavelength in vacuum.arrow_forwardTwo distant galaxies are observed to have redshifts z1 = 0.05 and z2 = 0.15, and distances d1 = 220.60 Mpc and d2 = 661.75 Mpc, respectively. Assuming the motion of the galaxies is due to the Hubble flow, determine the value of the Hubble constant, H0. Show how the value of H0 can be used to estimate the age of the Universe, describing any assumptions that you make. Use the value of H0 you have obtained to estimate the age of the Universe, expressing your answer in Gyr.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning