University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 44.16E
(a)
To determine
The colliding-beam experiment in which the two proton beams have equal kinetic energies that required minimum kinetic energy of the protons in each beam.
(b)
To determine
The collision of a beam with a stationary proton target that required minimum kinetic energy of the protons in each beam
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You work for a start-up company that is planning to use antiproton annihilation to produce radioactive isotopes for medical applications. One way to produce antiprotons is by the reaction p + p S p + p + p + p bar in proton-proton collisions.
(a) You first consider a colliding-beam experiment in which the two proton beams have equal kinetic energies. To produce an antiproton via this reaction, what is the required minimum kinetic energy of the protons in each beam?
(b) You then consider the collision of a proton beam with a stationary proton target. For this experiment, what is the required minimum kinetic energy of the protons in the beam?
Accelerators such as the Triangle Universities Meson Facility (TRIUMF) in British Columbia produce secondary beams of pions by having an intense primary proton beam strike a target. Such “meson factories” have been used for many years to study the interaction of pions with nuclei and,hence, the strong nuclear force. One reaction that occurs isπ+ + p → Δ++ → π+ + p , where the Δ++ is a very short-lived particle. The graph shows the probability of this reaction as a function of energy. The width of the bump is the uncertainty in energy due to the short lifetime of the Δ++ .(a) Find this lifetime.(b) Verify from the quark composition of the particles that thisreaction annihilates and then re-creates a d quark and a d antiquark by writing the reaction and decay in terms ofquarks.(c) Draw a Feynman diagram of the production and decay ofthe Δ++ showing the individual quarks involved.
Consider a proton that is incident on a target proton
(at rest). What is the threshold energy needed to produce a Higg's Boson. Use the
following estimates of the masses: m₂ = 1 [GeV] and my = 125 [GeV]. The Higgs boson
will eventually decay into leptons and protons (a particle physicist will tell you that the
Higgs bos m will decay through different channels). The threshold energy is the minimum
energy needed for all these processes (channels) to be observed as confirmed in 2012 at the
Large Ha tron Collider (LHC).
Chapter 44 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 44.1 - Each of the following particles can be exchanged...Ch. 44.2 - Prob. 44.2TYUCh. 44.3 - From conservation of energy, a particle of mass m...Ch. 44.4 - Prob. 44.4TYUCh. 44.5 - Prob. 44.5TYUCh. 44.6 - Is it accurate to say that your body is made of...Ch. 44.7 - Prob. 44.7TYUCh. 44 - Prob. 44.1DQCh. 44 - Prob. 44.2DQCh. 44 - When they were first discovered during the 1930s...
Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forwardChapter 37, Problem 044 In the reaction p + 19F -> ¤ + 10, the masses are: m(p) = 1.007825 u, m(a) = 4.002603 u, m(F) = 18.998405 u, m(0) = 15.994915 u. Calculate the Q of the reaction from these data. Number Unitsarrow_forwardYou are working for an alternative energy company. Your supervisor has an idea for a new energy source. He wants to build a matter-antimatter reactor that will convert the entire mass of the matter and antimatter into recoverable energy, with no waste. He has lofty ideas; he wants his reactor to provide energy to the entire world, replacing coal, fossil fuel, hydroelectric, wind, thermal, and nuclear energy sources in all countries. (a) He asks you to determine the masses of the supply of matter and antimatter that will need to be combined to provide the world’s needs for one year. (b) He also asks you to determine how large the storage containers must be to hold a 5.0-yr supply of the matter and antimatter while it is waiting to be used in the reactor. The current energy consumption worldwide is about 4.0 × 1020 J per year, and the matter and antimatter will have approximately the density of aluminum, 2.70 g/cm3.arrow_forward
- A neutral rho particle decays from rest into two pions through the following decay reaction: The masses of the particles are: p° = 775 MeV/c?, Tt = 140 MeV/c², 7¯ = 140 MeV/c?, What is the kinetic energy of the n+ immediately after the decay? Express your answer in units of MeV. Answer:arrow_forwardCalculate the energy Er, in megaelectronvolts (MeV), released in the following nuclear fission reaction: Cm(250) + n → Se(92) + Sm(153) + 6n The atomic masses are Cm(250)=250.078357 u, Se(92)=91.949926 u, and Sm(153)=152.922097 u. Er = ? MeVarrow_forward= Consider a proton that is incident on a target proton (at rest). What is the threshold energy needed to produce a Higg's Boson. Use the following estimates of the masses: mp 1 [GeV] and mµ = 125 [GeV]. The Higgs boson will eventually decay into leptons and protons (a particle physicist will tell you that the Higgs boson will decay through different channels). The threshold energy is the minimum energy needed for all these processes (channels) to be observed as confirmed in 2012 at the Large Hadron Collider (LHC).arrow_forward
- Certain theories predict that the proton is unstable, with a half-life of about 1032 years.Assuming that this is true, calculate the number of proton decays you would expect to occur in one year in the water of an Olympic-sized swimming pool holding 4.32 * 105 L of water.arrow_forwardAn electrically neutral pion (º) can be created in a collision between two protons. (The protons still exist after the interaction.) Thus the reaction is p+р-->p+p+⁰° The proton rest energy is 938 MeV, and the pion rest energy is 140 MeV. Imagine that you are designing an accelerator, and you want to make sure that it has sufficient energy to produce a . (a) If the accelerator shoots a beam of protons onto a stationary proton target, what is the minimum (threshold) kinetic energy per proton? (b) If the accelerator has two colliding beams of protons (both with the same energy), then what is the minimum (threshold) kinetic energy per proton?arrow_forwardA positive pion (π+, mass: m = 2.50 × 10-28 kg) at rest decays into a positive muon (μ+, mass: m₁ = 1.88 × 10-28 kg) and a neutrino. mμ (a) How much energy is released in the decay? You may assume the rest mass of the neutrino is negligible. Give your answer in MeV. (b) Give one reason why the neutrino is required in this decay. Briefly explain your answer.arrow_forward
- Question: If the entire 450 kg antimatter fuel supply of the Enterprise combines with the same amount of matter and is complete converted into energy, how much energy is then released? How does this compare to the U.S. yearly energy use, which is roughly 1.0 * 1020J?1 Give your answer as a percentage and give both answers in two significant figures (link). Remember E = m * c with c = 2.998 * 10° m/s 1Young, H.. and Freedman, R. (2015) University Physics with Modern Physics. Pearson. Solution: Released energy: Percentage:arrow_forwardThe intensity of cosmic ray radiation decreases rapidly with increasing energy, but there are occasionally extremely energetic cosmic rays that create a shower of radiation from all the particles they create by striking a nucleus in the atmosphere as seen in the figure given below. Suppose a cosmic ray particle having an energy of 1010 GeV converts its energy into particles with masses averaging 200 MeV/c2 . (a) How many particles are created? (b) If the particles rain down on a 1.00-km2 area, how many particles are there per square meter?arrow_forwardBecause the neutron has no charge, its mass must be found in some way other than by using a mass spectrometer. When a neutron and a proton meet (assume both to be almost stationary), they combine and form a deuteron, emitting a gamma ray whose energy is 2.2233 MeV. The masses of the proton and the deuteron are 1.007276467u and 2.013553212u, respectively. Find the mass of the neutron from these data. Could you please break this problem down completely...not just plug and chug. Thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning