University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 44.2E
(a)
To determine
The maximum wavelength of photons for the production of
(b)
To determine
The speed of muons after they have moved apart.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A proton and an antiproton annihilate, producing two photons. Find the energy, frequency, and wavelength of each photon (a) if the p and pbar are initially at rest and (b) if the p and p bar collide head-on, each with an initial kinetic energy of 620 MeV.
A muon, or mu meson, has the same charge as an electron, but is 207 times as massive.
a) Compared with electron-positron pair production, the pair production of a muon and antimuon requires a photon of what energy?
E = _____ MeV
b) What would be the minimum frequency for such a photon?
f = _________ Hz
Suppose that a muon neutrino and a muon antineutrino, both of which are just barely moving, encounter each other in space and
completely annihilate to form two photons of equal energy.
In view of the uncertainty about the mass of the muon
neutrino (< 0.180 MeV/c²), what is the shortest wavelength
Ao of light that could be emitted by the annihilation?
Would the light be visible to the human eye?
yes
O no
λο
=
m
Chapter 44 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 44.1 - Each of the following particles can be exchanged...Ch. 44.2 - Prob. 44.2TYUCh. 44.3 - From conservation of energy, a particle of mass m...Ch. 44.4 - Prob. 44.4TYUCh. 44.5 - Prob. 44.5TYUCh. 44.6 - Is it accurate to say that your body is made of...Ch. 44.7 - Prob. 44.7TYUCh. 44 - Prob. 44.1DQCh. 44 - Prob. 44.2DQCh. 44 - When they were first discovered during the 1930s...
Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 3. (a) Verify that the minimum energy a photon must have to create an electron-positron pair in the presence of a stationary nucleus of mass M is 2mc2(1 + m/M), where m is the electron rest mass. (b) Find the minimum energy needed for pair production in the presence of a proton.arrow_forwardIn a pair-production reaction, a photon produces a proton-antiproton pair. Y → p + p The rest energy of a proton is 938.3 MeV. (a) What is the lowest possible frequency (in Hz) of the photon that can produce the proton-antiproton pair? Hz (b) What is the wavelength (in m) that corresponds to this lowest possible frequency?arrow_forwardThe range of the nuclear strong force is believed to be about 1.2 x 10-15 m. An early theory of nuclear physics proposed that the particle that “mediates” the strong force (similar to the photon mediating the electromagnetic force) is the pion. Assume that the pion moves at the speed of light in the nucleus, and calculate the time ∆t it takes to travel between nucleons. Assume that the distance between nucleons is also about 1.2 x 10-15 m. Use this time ∆t to calculate the energy ∆E for which energy conservation is violated during the time ∆t. This ∆E has been used to estimate the mass of the pion. What value do you determine for the mass? Compare this value with the measured value of 135 MeV/c2 for the neutral pion.arrow_forward
- Most of the particles known to physicists are unstable. For example, the lifetime of the neutral pion,π0, is about 8.4x10-17 s. Its mass is 135.0 MeV/c2. a) What is the energy width of the π0 in its ground state? b) What is the relative uncertainty ∆m/m of the pion’s mass?arrow_forwardAlthough muons have a half-life of 2.2 µs, physical chemists have been able to construct various muonic elements out of them. Replacing the electron with a muon in hydrogen, what is the Bohr radius (in m) of this muonic hydrogen in the ground state? (The mass of a muon is 1.88 ✕ 10−28 kg.)arrow_forwardPls help ASAP.arrow_forward
- Provide the answers in 90 minutes, and count as 2 questions if needed.arrow_forwardAn electron and a positron undergo pair annihilation . If they had approximately zero kinetic energy before the annihilation, what is the wavelength of each g produced by the annihilation?arrow_forwardA neutral pion (º= uu or dd) decays while at rest into two photons (y). 135MeV/c² m40 = a) What is the angle between the two photons? b) What is the momentum of each photon?arrow_forward
- Calculate the speeds of the electrons from a 1 kV electron gun and from a 1 MV electron gun. The mass of the electron is 0.511 MeV or 9.109 * 10 ^ - 31 * kgarrow_forwardThe Belle 2 experiment at the SuperKEKB accelerator records collisions between electrons with energy E₁ = 7 GeV and positrons with Ee+ = 4 GeV. The aim is to produce a large number of B-meson pairs through the Y(4S) resonance and study their decays. a) Calculate the center-of-mass energy and the momentum of the Y(4S) resonance in the laboratory. (You can neglect the mass of the electron/positron in the calculation.) b) The Belle2 experiment has an electromagnetic calorimeter based on scintillating Cesium- lodide (Csl) crystals with a depth of 30 cm (see appendix) and a Cerenkov detector which uses an aerogel with n = 1.045. Calculate the minimum number of crystal layers needed to contain the signal produced by a high-energetic electron or photon. Calculate the minimum energy of a + and a 7° needed to create a signal in the Cerenkov detector.arrow_forwardQ5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning